• Title/Summary/Keyword: 분류 트리 방법

Search Result 232, Processing Time 0.03 seconds

ECG-based Biometric Authentication Using Random Forest (랜덤 포레스트를 이용한 심전도 기반 생체 인증)

  • Kim, JeongKyun;Lee, Kang Bok;Hong, Sang Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.100-105
    • /
    • 2017
  • This work presents an ECG biometric recognition system for the purpose of biometric authentication. ECG biometric approaches are divided into two major categories, fiducial-based and non-fiducial-based methods. This paper proposes a new non-fiducial framework using discrete cosine transform and a Random Forest classifier. When using DCT, most of the signal information tends to be concentrated in a few low-frequency components. In order to apply feature vector of Random Forest, DCT feature vectors of ECG heartbeats are constructed by using the first 40 DCT coefficients. RF is based on the computation of a large number of decision trees. It is relatively fast, robust and inherently suitable for multi-class problems. Furthermore, it trade-off threshold between admission and rejection of ID inside RF classifier. As a result, proposed method offers 99.9% recognition rates when tested on MIT-BIH NSRDB.

A Spam Mail Classification Using Link Structure Analysis (링크구조분석을 이용한 스팸메일 분류)

  • Rhee, Shin-Young;Khil, A-Ra;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.30-39
    • /
    • 2007
  • The existing content-based spam mail filtering algorithms have difficulties in filtering spam mails when e-mails contain images but little text. In this thesis we propose an efficient spam mail classification algorithm that utilizes the link structure of e-mails. We compute the number of hyperlinks in an e-mail and the in-link frequencies of the web pages hyperlinked in the e-mail. Using these two features we classify spam mails and legitimate mails based on the decision tree trained for spam mail classification. We also suggest a hybrid system combining three different algorithms by majority voting: the link structure analysis algorithm, a modified link structure analysis algorithm, in which only the host part of the hyperlinked pages of an e-mail is used for link structure analysis, and the content-based method using SVM (support vector machines). The experimental results show that the link structure analysis algorithm slightly outperforms the existing content-based method with the accuracy of 94.8%. Moreover, the hybrid system achieves the accuracy of 97.0%, which is a significant performance improvement over the existing method.

Pridict of Liver cirrhosis susceptibility using Decision tree with SNP (Decision Tree와 SNP정보를 이용한 간경화 환자의 감수성 예측)

  • Kim, Dong-Hoi;Uhmn, Saang-Yong;Cho, Sung-Won;Ham, Ki-Baek;Kim, Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.63-66
    • /
    • 2006
  • 본 논문에서는 SNP데이터를 이용하여 간경화에 대한 감수성을 예측하기 위해 의사결정 트리를 이용하였다. 데이터는 간경화 환자와 정상환자 총 116명의 데이터를 사용하였으며, Feature 값으로는 간질환과 밀접한 연관성을 갖는 28개의 SNP데이터를 사용하였다. 실험방법은 각각의 SNP에 대하여 의사결정트리로 분류율을 측정한 후 가장 높은 분류율을 가지는 SNP부터 조합해 나가는 방식으로 C4.5 의사결정트리를 이용 leave-one-out cross validation으로 간경화와 정상을 구분하는 정확도를 측정하였다. 실험결과 간 질환 관련 SNP중 IL1RN-S130S, IRNGR2-Q64R, IL-10(-592), IL1B_S35S 4개의 SNP조합에서 65.52%의 정확도를 얻을 수 있었다.

  • PDF

A Condition Processing System of Active Rules Using Analyzing Condition Predicates (조건 술어 분석을 이용한 능동규칙의 조건부 처리 시스템)

  • Lee, Gi-Uk;Kim, Tae-Sik
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.21-30
    • /
    • 2002
  • The active database system introduces the active rules detecting specified state. As the condition evaluation of the active rules is performed every time an event occurs, the performance of the system has a great influence, depending on the conditions processing method. In this paper, we propose the conditions processing system with the preprocessor which determines the delta tree structure, constructs the classification tree, and generates the aggregate function table. Due to the characteristics of the active database through which the active rules can be comprehended beforehand, the preprocessor can be introduced. In this paper, the delta tree which can effectively process the join, selection operations, and the aggregate function is suggested, and it can enhance the condition evaluation performance. And we propose the classification tree which effectively processes the join operation and the aggregate function table processing the aggregate function which demands high cost. In this paper, the conditions processing system can be expected to enhance the performance of conditions processing in the active rules as the number of conditions comparison decreases because of the structure which is made in the preprocessor.

Classification of Cancer-related Gene Expression Data Using Neural Network Classifiers (신경망 분류기를 이용한 암 관련 유전자 발현정보를 분류)

  • 권영준;류중원;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.295-297
    • /
    • 2001
  • 최근 생물 유전자 정보를 효과적으로 분석하기 위한 적절한 도구의 필요성이 대두되고 있다. 본 논문에서는 백혈병 환자의 골수로부터 얻어낸 DNA Microarray 유전 정보를 분류하여 환자가 가지고 있는 암의 종류를 예측하기 위한 최적의 특징추출방법과 분류 방법을 찾고자 한다. 이를 위해 피어슨 상관관계, 유클리디안 거리, 코사인 계수, 스피어맨 상관관계, 정보 이득, 상호 정보, 신호 대잡음비의 7가지 특징 추출 방법을 사용하였으며, 역전과 신경망, 의사결정 트리, 구조 적응형 자기구성 지도, $textsc{k}$-최근접 이웃 등 가지의 기계학습 분류기를 이용하여 분류 실험을 하였다. 실험결과, 피어슨 상관관계와 역전파 신경망을 이용한 분류 방법이 97.1%의 인식률을 보임을 알 수 있었다.

  • PDF

Effective WFS Tree Pruning Method using Hyperplane Partition for VectorBoost Classifier (VectorBoost 분류기에서 초평면 분할을 이용한 효율적인 WFS트리 가지치기 방법)

  • Yun, Jong-Min;Kim, Dae-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.468-470
    • /
    • 2012
  • 본 논문에서는 기존 VectorBoost기반 분류기의 문제점이었던 다중 분할 노드에서의 오판단 발생을 해결하기 위해, LDA를 이용해 학습 샘플들을 가장 잘 분리할 수 있는 최적의 초평면을 구하고, 이 초평면을 이용해 Positive샘플에서 VectorBoost의 판단율을 향상시키는 방법을 제안한다. 이러한 방법을 적용했을 때 Positive샘플들의 오판단율이 감소하는 효과를 보였으며, 불필요한 연산의 감소로 약 30%의 속도향상을 얻을 수 있었다.

Classification of False Alarms based on the Decision Tree for Improving the Performance of Intrusion Detection Systems (침입탐지시스템의 성능향상을 위한 결정트리 기반 오경보 분류)

  • Shin, Moon-Sun;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.473-482
    • /
    • 2007
  • Network-based IDS(Intrusion Detection System) gathers network packet data and analyzes them into attack or normal. They raise alarm when possible intrusion happens. But they often output a large amount of low-level of incomplete alert information. Consequently, a large amount of incomplete alert information that can be unmanageable and also be mixed with false alerts can prevent intrusion response systems and security administrator from adequately understanding and analyzing the state of network security, and initiating appropriate response in a timely fashion. So it is important for the security administrator to reduce the redundancy of alerts, integrate and correlate security alerts, construct attack scenarios and present high-level aggregated information. False alarm rate is the ratio between the number of normal connections that are incorrectly misclassified as attacks and the total number of normal connections. In this paper we propose a false alarm classification model to reduce the false alarm rate using classification analysis of data mining techniques. The proposed model can classify the alarms from the intrusion detection systems into false alert or true attack. Our approach is useful to reduce false alerts and to improve the detection rate of network-based intrusion detection systems.

A Fuzzy Decision Tree for Data Mining (데이터 마이닝을 위한 퍼지 결정트리)

  • 이중근;민창우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.63-65
    • /
    • 1998
  • 사회 전 분야에서 데이터가 폭발적으로 증가함에 따라 데이터를 이해하고 분석하는 새로운 자동적이고 지능적인 데이터 분석 도구와 기술이 필요하게 되었다. KDD(Knowledge Discovery in Databases)는 이러한 필요로부터 데이터에서 유용하고 이해 가능한 지식을 추출하는 연구이다. 데이터 마이닝(Data Mining)은 KDD에서 가장 중요한 단계로 데이터로부터 지식을 추출하는 단계이다. 데이터 마이닝에서 생성된 지식은 좋은 분류율을 가져야하고 이해하기 쉬워야한다. 본 논문에서는 퍼지 결정트리(FDT : Fuzzy Decision Tree)에 기반한 효율적인 데이터 마이닝 알고리즘을 제안한다. FDT의 각 링크는 속성(attribute) 값을 갖는 퍼지 집합이며, EDT의 각 경로는 퍼지 규칙을 생성한다. 제안된 알고리즘은 ID3의 이해성과 퍼지이론의 추론과 표현력을 결합한 방법으로 히스토그램에 이루어진다. 마지막으로 제안된 방법의 타당성을 검증하기 위해 표준적인 패턴 분류 벤치마크 데이터에 대한 실험 결과를 보인다.

  • PDF

Analysis of Leaf Node Ranking Methods for Spatial Event Prediction (의사결정트리에서 공간사건 예측을 위한 리프노드 등급 결정 방법 분석)

  • Yeon, Young-Kwang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.101-111
    • /
    • 2014
  • Spatial events are predictable using data mining classification algorithms. Decision trees have been used as one of representative classification algorithms. And they were normally used in the classification tasks that have label class values. However since using rule ranking methods, spatial prediction have been applied in the spatial prediction problems. This paper compared rule ranking methods for the spatial prediction application using a decision tree. For the comparison experiment, C4.5 decision tree algorithm, and rule ranking methods such as Laplace, M-estimate and m-branch were implemented. As a spatial prediction case study, landslide which is one of representative spatial event occurs in the natural environment was applied. Among the rule ranking methods, in the results of accuracy evaluation, m-branch showed the better accuracy than other methods. However in case of m-brach and M-estimate required additional time-consuming procedure for searching optimal parameter values. Thus according to the application areas, the methods can be selectively used. The spatial prediction using a decision tree can be used not only for spatial predictions, but also for causal analysis in the specific event occurrence location.

Web Document Classification Based on Hangeul Morpheme and Keyword Analyses (한글 형태소 및 키워드 분석에 기반한 웹 문서 분류)

  • Park, Dan-Ho;Choi, Won-Sik;Kim, Hong-Jo;Lee, Seok-Lyong
    • The KIPS Transactions:PartD
    • /
    • v.19D no.4
    • /
    • pp.263-270
    • /
    • 2012
  • With the current development of high speed Internet and massive database technology, the amount of web documents increases rapidly, and thus, classifying those documents automatically is getting important. In this study, we propose an effective method to extract document features based on Hangeul morpheme and keyword analyses, and to classify non-structured documents automatically by predicting subjects of those documents. To extract document features, first, we select terms using a morpheme analyzer, form the keyword set based on term frequency and subject-discriminating power, and perform the scoring for each keyword using the discriminating power. Then, we generate the classification model by utilizing the commercial software that implements the decision tree, neural network, and SVM(support vector machine). Experimental results show that the proposed feature extraction method has achieved considerable performance, i.e., average precision 0.90 and recall 0.84 in case of the decision tree, in classifying the web documents by subjects.