• Title/Summary/Keyword: 분류방법

Search Result 11,129, Processing Time 0.041 seconds

An Ensemble Fingerprint Classification System Using Changes of Gradient of Ridge (융선 기울기의 변화량을 이용한 앙상블 지문분류 시스템)

  • Yoon, Kyung-Bae;Park, Chang-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.545-551
    • /
    • 2003
  • Henry System which is a traditional fingerprint classification model is difficult to apply to a modem Automatic Fingerprint Identification System (AFIS). To tackle this problem, this study is to apply algorithm for an An Ensemble Fingerprint Classroom System using changes of gradient of ridge in order to improve precise joining speed of a large volume of database. The existing classification system, Henry System, is useful in a captured fingerprint image of core point and delta point using paper and ink. However, the Henry System is unapplicable in modem Automatic Fingerprint Identification System (AFIS) because of problems such as size of input sensor and way of input. This study is to suggest an Ensemble Fingerprint Classroom System which can classify 5 basic patterns of Henry System in uncaptured delta image using changes of gradient of ridge. The proposed fingerprint classification technique will make an improvement of precise joining speed by reducing data volume.

A Study on Clustering Algorithm Using Design Pattern Structure (디자인 패턴 구조를 이용한 클러스터링에 관한 연구)

  • 한정수;김귀정
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.1
    • /
    • pp.68-76
    • /
    • 2002
  • Clustering is representative method of components classification. But, previous clustering method that use cohesion and coupling can not be effective, because design pattern has consisted by relation between classes. In this paper, we classified design patterns with special quality of pattern structure. Classification by clustering had expressed higher correctness degree than classification by facet. Therefore, can do that it is effective that classify design patterns using clustering algorithms that is automatic classification method. When we are searching design patterns, classification of design patterns can compare and analyze similar patterns because similar patterns is saved to same category. Also we can manage repository efficiently because of using and storing link information of patterns.

  • PDF

(Color Eigen-Space Analysis for Efficient Face Image Classification) (효과적인 얼굴 영상 분류를 위한 컬러 고유 공간 분석)

  • 김경수;최형일
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.195-200
    • /
    • 1997
  • 영상을 분류한다거나 물체를 인식하는 방법들은 대부분 흑백 영상에 대한 것이다. 그 이유는 기존의 분류 방법에 어떻게 컬러 정보를 결합시킬 것인가 하는 문제를 쉽게 해결하지 못하거나 처리하는데 훨씬 많은 시간이 소요되기 때문이다. 본 연구에서는 컬러 영상들을 분류하기 위하여 기존의 고유 백터를 컬러 공간에 이용할 수 있는 방법을 제안하고, 이 고유 백터를 이용하여 컬러 얼굴 영상에 대한 분류 실험을 통해 여러 가지 특징에 대한 고유 백터를 영상 분류에 이용할 수 있음을 보였다.

  • PDF

Gene Selection based on Class Information (클래스 정보에 기반한 유전자 선택)

  • Lee Hyunjin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.469-472
    • /
    • 2004
  • 여러 분류 문제에 다층퍼셉트론이 적용되어 좋은 성능을 보이고 있다. 하지만, 암 분류를 위한 분류기로 사용되는데 있어서 문제점은 샘플데이터 수에 비해 입력으로 사용되는 유전자의 수가 너무 많기 때문에 좋은 성능을 기대하기 힘들다는 점이다. 또한 많은 입력노드로 인해 가중치 파라메터들의 수가 증가하기 때문에 학습시에 계산량의 부담을 가중시킨다. 따라서 본 논문에서는 많은 유전자중에서 암분류에 중요한 영향을 끼치는 유전자를 선택하는 방법을 제안한다. 이러한 유전자 선택을 위하여 클래스의 정보를 나타내는 척도를 분석하고 이를 기반으로 하여 분류율을 향상시킬 수 있는 유전자를 선택하는 방법을 제안한다. 이렇게 선택된 유전자를 입력으로 하여 분류기를 구성하여, 제안하는 방법의 우수성을 검증한다.

  • PDF

The selection of Best suited Automatic Web Document Classification Based on Intranet (인트라넷 기반의 최적의 웹문서 자동 분류기법 선정)

  • 김국희;윤희병
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.423-426
    • /
    • 2004
  • 인트라넷에서는 증가하는 웹문서의 검색을 목적으로 웹 검색엔진의 도입이 활발히 진행 중이며 대부분 찾아야할 키워드를 알고 접근하는 검색엔진 형태이다. 그러나 사용자가 무엇을 찾아야 하는지 모르는 경우 웹문서 분류체계는 효율적인 방법을 제시할 수 있다. 일부 구축되어 있는 분류체계는 수작업에 의한 분류로 인해 증가하는 웹문서의 양에 효율적으로 대처하기 곤란하므로 자동분류기법을 활용한 분류가 더 효율적일 것이다. 본 논문에서는 국방인트라넷의 수작업으로 구축된 분류체계를 대상으로 용어 가중치를 계산하는 방법을 달리하여 다양한 분류기법을 적용하여 성능을 비교평가하고 웹문서 자동분류시스템에 적용하여 분류성능의 향상을 도모하고자 한다.

  • PDF

Enriching Core Ontology with Domain Thesaurus (분야 시소러스를 이용한 코아 온톨로지 확장)

  • Huang, Jin-Xia;Shin, Ji-Ae;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.31-37
    • /
    • 2007
  • 본 논문에서는 분야 시소러스의 개념과 관계를 이용하여 코아 온톨로지를 확장하는 방법을 제안한다. 분야 시소러스의 개념을 코아 온톨로지의 상위 개념으로 분류하고, 시소러스에서의 광의어(Broader Term: BT)-협의어(Narrower Term: NT) 및 광의어-관련어(Related Term: RT)들 사이의 관계는 코아 온톨로지에서 정의한 의미관계로 분류한다. 유사도와 빈도수 기반의 방법으로 개념 분류를 수행하였고, 관계 분류에서는 두 가지 방법을 적용하였는데, (i) 훈련데이터가 부족한 경우를 위하여 규칙기반 방법으로 BT-NT/RT관계를 isa와 기타 관계(non-isa관계)로 분류하고, 패턴기반 방법으로 non-isa관계를 온톨로지를 위한 의미관계로 분류한다. (ii) 훈련데이터를 충분히 가지고 있을 경우, 최대 엔트로피 모델(MEM)을 적용한 분류 방법을 사용하되, kNN방법으로 훈련데이터를 정제하였다. 본 논문에서 제안한 방법으로 시스템을 구축하였고, 실험 결과, 시스템 성능이 사람에 의한 판단 결과와 비교 가능한 수준이었다.

  • PDF

Cancer Classification with Gene Expression Profiles using Forward Selection Method (전진 선택법을 이용한 유전자 발현정보 기반의 암 분류)

  • Yoo, Si-Ho;Cho, Sung-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.293-296
    • /
    • 2003
  • 유전 발현 데이터는 생명체의 특정 조직에서 채취한 샘플을 microarray상에서 측정한 것으로 유전자들의 발현 정도가 수치로 나타난 데이터이다. 일반적으로 정상조직과 이상조직에서 관련 유전자들의 발현 정도는 차이를 보이기 때문에, 유전발현 데이터를 통하여 암을 분류할 수 있다. 하지만 분류에 모든 유전자가 관여하지는 않으므로 관련성 있는 유전자만을 선별해내는 작업인 특징 선택방법이 필요하다. 본 논문에서는 회귀분석의 변수선택방법중 하나인 전진 선택법(forward selection method)을 사용하여 유전자들을 선택하고 분류하는 방법을 제안한다. 실험데이터는 대장암 데이트를 사용하였고, 분류기는 KNN을 사용하였다. 이 방법과 상관계수를 이용한 특징 선택 방법인 피어슨 상관계수와 스피어맨 상관계수방법과 비교해본 결과 전진 선택법에 의한 특징 선택방법이 암의 분류에 있어서 더 효과적인 유전자 선택을 한다는 사실을 확인하였다. 실험결과 90.3%의 높은 인식률을 보였다.

  • PDF

Novel Intent Discovery Utilizing Large Language Models and Active Learning Strategies (대규모 언어 모델을 활용한 새로운 의도 발견 방법과 액티브 러닝 전략)

  • Changwoo Chun;Daniel Rim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.425-431
    • /
    • 2023
  • 음성 어시스턴트 시스템에서 발화의 의도를 분류하고 새로운 의도를 탐지하는 것은 매우 중요한 작업이다. 끊임없이 인입되는 새로운 발화로 인해 기존에 학습된 모델의 의도 분류 성능은 시간이 지남에 따라 점차 낮아진다. 기존 연구들에서 새로운 의도 발견을 위해 제안되었던 클러스터링 방법은 최적의 클러스터 수 결정과 명명에 어려움이 있다. 이러한 제한 사항을 보완하기 위해, 본 연구에서는 대규모 언어 모델 기반의 효과적인 의도 발견 방법을 제안한다. 이 방법은 기존 의도 분류기로 판단하기 어려운 발화에 새로운 의도 레이블을 할당하는 방법이다. 새롭게 인입되는 OOD(Out-of-Domain) 발화 내에서 오분류를 찾아 기존에 정의된 의도를 탐지하고, 새로운 의도를 발견하는 효율적인 프롬프팅 방법도 분석한다. 이를 액티브 러닝 전략과 결합할 경우, 분류 가능한 의도의 개수를 지속 증가시면서도 모델의 성능 하락을 방지할 수 있고, 동시에 새로운 의도 발견을 자동화 할 수 있다.

  • PDF

정보의 기밀등급 분류 방법의 개요

  • 김세헌
    • Review of KIISC
    • /
    • v.1 no.1
    • /
    • pp.124-129
    • /
    • 1991
  • 정보 보안의 요소는 인가되지 않은 사람이 시스템에 액세스(Access)하거나 인가없 이 사용하는 것을 방지하는 액세스 통제이다. 이를 위해서 정보의 기밀정도에 따라 보호정 도를 결정하는 기밀등급분류가 이루어져 정보를 선택관리하는체계가 이루어 져야한다. 정 보를 선택관리하기 위해서는 보호할 만한 정보를 식별하고, 식별된 중요정보를 어떤 방법 으로 유지, 관리, 이용할 것인지를 규정하는 것이 필요하다. 본 논문에서는 정보 기밀등급 의 체계적인 분류방법에 대해 살펴보기로 한다.

  • PDF

Reinforcement Method for Automated Text Classification using Post-processing and Training with Definition Criteria (학습방법개선과 후처리 분석을 이용한 자동문서분류의 성능향상 방법)

  • Choi, Yun-Jeong;Park, Seung-Soo
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.811-822
    • /
    • 2005
  • Automated text categorization is to classify free text documents into predefined categories automatically and whose main goals is to reduce considerable manual process required to the task. The researches to improving the text categorization performance(efficiency) in recent years, focused on enhancing existing classification models and algorithms itself, but, whose range had been limited by feature based statistical methodology. In this paper, we propose RTPost system of different style from i.ny traditional method, which takes fault tolerant system approach and data mining strategy. The 2 important parts of RTPost system are reinforcement training and post-processing part. First, the main point of training method deals with the problem of defining category to be classified before selecting training sample documents. And post-processing method deals with the problem of assigning category, not performance of classification algorithms. In experiments, we applied our system to documents getting low classification accuracy which were laid on a decision boundary nearby. Through the experiments, we shows that our system has high accuracy and stability in actual conditions. It wholly did not depend on some variables which are important influence to classification power such as number of training documents, selection problem and performance of classification algorithms. In addition, we can expect self learning effect which decrease the training cost and increase the training power with employing active learning advantage.