• 제목/요약/키워드: 분류(分類)

검색결과 34,814건 처리시간 0.074초

식물학문헌을 위한 자동분류시스템의 개발 (Developing an Automatic Classification System for Botanical Literatures)

  • 김정현;이경호
    • 한국도서관정보학회지
    • /
    • 제32권4호
    • /
    • pp.99-117
    • /
    • 2001
  • 본 연구는 분류자동화를 위해 이미 연구된 바 있는 농학 및 의학분야의 AutoBC 시스템에 대한 계속적인 연구의 일환으로 식물학분야의 문헌에 대해 분류자동화가 가능한지의 여부를 CC의 원리를 응용하여 실험 및 검증한 것이다. 분류자동화를 위한 데이터베이스는 원통형과 행렬식의 원리에 의해 설계되었으며, 문헌의 표제나 키워드를 입력하여 자동적인 주제인지 및 분류기호가 생성될 수 있는 윈도우용 자동분류시스템을 새로이 개발하여 실험하였다.

  • PDF

Core point와 Flow-line 추적을 이용한 지문 영상의 분류 (Fingerprint Classification Using Core Points and Flow-line Tracing)

  • 박철현;오상근;이경환;김현순;박길흠
    • 한국통신학회논문지
    • /
    • 제26권4B호
    • /
    • pp.505-513
    • /
    • 2001
  • 지문영상의 분류는 데이터베이스의 용량이 클 경우 검색시간을 효율적으로 단축시킬 수 있는 핵심적인 기술이다. 따라서 본 논문에서 core point 와 flow-line 추적을 이용한 효율적인 지문 영상 분류 기법을 제안한다. 제안한 방법은 특히 압착 날인된 지문 영상의 분류에 적합한 방법으로 크게 2단계로 이루어져 있다. 첫 번째 단계에서는 먼저 Poincare index를 이용하여 core point를 찾아내고 이를 바탕으로 개략적인 분류를 수행한다. 그 다음 두 번째 단계에서는 core point를 중심으로 flow-line을 추적하여 그 결과를 가지고 세부적인 분류를 수행한다. 세부분류 단계에서는 평활화된 블록의 방향정보를 이용한 효과적인 flow-line 추적 알고리즘과 이를 이용한 새로운 분류 방법이 제안된다. 제안한 방법은 회전이나 이동 그리고 약간의 잡음에 강인한 지문 분류 방법으로 지문입력기를 통하여 획득된 700장의 지문 영상에 적용해 본 결과 93.6%의 분류율을 나타내었다.

  • PDF

CNN과 다양한 분류 방법의 결합에 의한 성능 비교 (Performance Comparison by Combining CNN with Various Classification Methods)

  • 한정수;곽근창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.609-610
    • /
    • 2016
  • 본 논문에서는 컨볼루션 신경회로망(CNN: Convolutional Neural Network)과 다양한 분류기들의 결합을 통해 분류성능을 비교하고자 한다. 현재 일반적인 분류기로 알려진 것은 나이브 베이즈(Naive bayes), 트리(Tree), 판별 분석(Discriminant Analysis), 서포트 벡터 머신(SVM: Support Vector Machine) 등이 존재한다. 분류기들은 각각 다른 원리로 분류하기 때문에, 각각 성능을 비교해볼 필요가 있다. 분류기들의 성능을 비교하기 위한 사용한 데이터는 CNN에서 자주 사용되고 있는 MNIST 데이터를 사용하였다. 실험 결과로는 CNN에 선형 SVM을 결합하여 사용한 것이 분류율과 분류속도 측면에서 다른 분류기들의 성능보다 좋은 성능을 보이는 것을 확인할 수 있었다.

웹 문서 수집을 위한 효율적인 문서 분류 (Efficient Document Classification for Web Document Collection)

  • 이정훈;전서현;김선희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.397-401
    • /
    • 2006
  • 최근 다양한 형식의 웹 문서에서 사용자가 원하는 정보만을 검색 하기위해 웹 문서를 주제별로 분류하여 수집하고, 관리하는 것은 필수적인 요소이다. 즉, 정확하고 빠른 정보 검색을 위한 웹 문서 수집은 문서 형식에 따라 분류되어 수집 되어야 한다. 따라서 웹 환경에서 문서를 구성하는 형식을 텍스트나 이미지 데이터로 구분하고 그 형식에 맞는 분류기법을 사용한다면 정확한 정보 검색이 이루어 질수 있다. 본 논문에서는 텍스트와 URL을 이용한 주제 중심의 하이브리드 웹 문서 분류 방법을 제안한다. 텍스트와 URL을 이용한 분류 방법은 텍스트 형식은 주제 중심의 문서 분류방식을 사용하며, 텍스트 정보의 효용성이 낮은 경우 URL의 주제 분포도를 이용하여 분류하며 수집한다. 이를 통해 여러 가지 형식의 웹 문서가 분류 가능하며, 주제에 따른 문서 분류의 정확도가 높아진다.

  • PDF

한.영 기계번역을 위한 한국어 품사 분류 (Classification of Korean Parts-of-Speech for Korean-English Machine Translation)

  • 송재관;박찬곤
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.165-167
    • /
    • 1998
  • 본 논문에서는 한.영 기계번역을 위한 한국어 품사 분류를 한다. 한국어 표준문법에서 제시되는 품사 분류 기준은 의미, 기능, 형식의 세 가지 기준을 적용하고 있으며, 자연언어처리에서도 같은 분류 기준을 바탕으로 하고 있다. 품사 분류에 여러 가지 기준을 적용하는 것은 문법구조 이해 및 품사 분류를 어렵게 한다. 또한 한.영 기계번역시 품사의 불일치로 전처리가 필요하다. 이러한 문제를 해결하기 위하여 본 논문에서는 하나의 기준을 적용하여 품사 분류를 한다. 방법으로 한국어 표준문법에 의하여 말뭉치에 태깅하고 문제점을 찾아내며, 새로운 기준에 의하여 품사 분류를 한다. 본 논문에서 분류된 품사는 한국어 문장에서 통사적 역할이 동일하고, 영에서의 사전 품사와 동일하다. 또한 품사 분류의 모호성을 제거하고, 한국어의 문장 구조를 명확히 표현하며, 한.영 기계번역시 패턴 매칭에 의한 목적언어 생성이 가능하다.

  • PDF

SVM 분류기를 이용한 문서 범주화 연구 (An Experimental Study on Text Categorization using an SVM Classifier)

  • 정영미;임혜영
    • 정보관리학회지
    • /
    • 제17권4호
    • /
    • pp.229-248
    • /
    • 2000
  • 문서 범주화에 이용되는 학습알고리즘 중에서 이원 패턴인식 문제를 해결하기 위해 제안된 SVM은 다른 분류기 보다 우수한 성능을 보이고 있다. 본 연구에서는 Reuters-21578 (ModApte 분할판)을 대상으로 SVM 분류기를 이용하여 단어빈도, 역문헌빈도, 문헌길이 정규화 공식을 자질에 대한 가중치로 적용하여 성능을 평가하고, 선형 SVM과 비선형 SVM의 분류 성능을 비교하였다. 또한 이원 분류기를 승자독식 방법과 쌍단위 분류방법에 의해 다원 분류기로 확정하여 실험한 후 이원 분류기와의 성능을 비교 분석하였다.

  • PDF

Wavelet 변환에 기반한 유방 종양 세포 조직 영상의 분류 (Classification of Breast Tumor Cell Tissue Section Images Based on Wavelet Transform)

  • 황해길;최현주;최익환;최흥국;윤혜경
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.340-342
    • /
    • 2001
  • 본 논문은 유방질환 중에서 Duct(관)에 발생하는 유방 종양을 benign(양성종양)/DCIS (Ductal Carcinoma In Situ)/NOS(Invasive ductal carcinoma)로 자동 분류하기 위한 분류방법을 제안한다. 분류기 생성에서 가장 중요한 단계인 특징 추출단계에서는 wavelet 변환을 적용하였으며, wavelet 변환의 각 depth에 따라 분류기를 생성하여, depth와 생성된 분류기의 분류 정확도와의 상관관계를 비교.분석하였다. 현미경 100배 배율과 400배 배율의 유방 질환 영상을 1, 2, 3, 4단계(depth)의 wavelet 변환을 적용한 후, 분할된 서브밴드에서 GLCM을 이용하여 질감 특징(Entropy, Energy, Contrast, Homogeneity)을 추출하여, 이 특징값들을 조합하여 판별분석에 의해 분류기(classifier)를 생성한 후, 분류 정확도를 검증하였다. Benign/DCIS/NOS를 분류하려면 최소 3단계 이상의 wavelet 변환을 적용해야 하고, 400배 배율 영상보다는 100배 배율의 영상이 더 나은 결과를 보였다.

  • PDF

메가프로젝트를 위한 업무분류체계기준(WBS Basis) 개발 (Development of Work Breakdown Structure Basis for Mega-Project)

  • 이희덕;서용칠;이승훈;우유미
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2008년도 정기학술발표대회 논문집
    • /
    • pp.441-444
    • /
    • 2008
  • 메가프로젝트(Mega-Project)는 다양한 유형의 시설군을 복합 개발하는 건설사업으로서 규모가 크고 복잡한 경우가 많기 때문에 종합적인 사업관리에 어려움이 따른다. 따라서 메가프로젝트는 기존의 단위프로젝트 수준이 아닌 프로그램 수준에서의 관리체계를 필요로 하며 그에 적합한 업무분류체계(WBS)를 구축해야 한다. 업무분류체계는 사업관리를 위한 전체적인 구조를 수립하는 기반으로서, 현재 프로그램 관리 수준의 업무분류체계의 기준이 갖추어지지 않은 상황이다. 이에 본 연구에서는 메가프로젝트를 위한 업무분류체계기준(WBS Basis)를 개발하여 메가프로젝트의 업무분류체계 구축을 지원하고자 한다. 메가프로젝트 생애주기에 포함되는 전체 시설군, 업무 및 용역, 기록문서, 정보 등을 대상으로 하였으며, 기존 사례분석과 관련 분류체계들을 바탕으로 초안을 작성하였다. 이후 현장시험을 통한 검증을 거쳐 최종 업무분류체계기준을 완성하였고 분류내용과 활용방안을 소개한다.

  • PDF

개선된 악성 코드 분류지침 및 명명법에 관한 연구 (A Study on the Advanced Classification and Naming Convention of Malicious Code)

  • 곽효승;김판구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (중)
    • /
    • pp.1095-1098
    • /
    • 2002
  • 국내외 카 백신업체별로 악성 코드의 분류 체계가 마련되어 있지만 각각의 백신업체별로 분류 체계가 차이가 있고 또한 도스 운영체제 때부터 사용한 분류 체계를 그대로 사용하여 현재의 악성 코드 분류와는 많은 차이를 보이고 있다. 이러한 백신업체들의 악성 코드 분류를 정착하게 분류하는 방법으로 본 논문에서 새로운 악성 코드 분류지침과 분류지침에 의한 명명법을 제안한다. 본 논문에서 제안한 분류지침을 토대로 안티-바이러스 산업 및 악성 코드 연구를 활성화시키는 정책 수립의 기초 자료를 사용한 수 있으며, 악성 코드 정보의 체계화 통합화 표준화 등에 기여할 수 있다.

  • PDF

마코프 모텔 기반 지문의 구조적 특징 분류 (Markov Models based Classification of Fingerprint Structural Features)

  • 정혜욱;원종진;김문현
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2005년도 추계학술대회 및 정기총회
    • /
    • pp.33-38
    • /
    • 2005
  • 지문분류는 대규모 인증시스템에 사용되는 지문 데이터 베이스를 종류별로 인덱싱 하거나 인식 시스템에 다양하게 쓰이는 매우 중요한 방법이다. 지문은 일반적으로 융선의 전체모양 등 전역적인 특징을 기반으로 분류하며, 분류방법에는 규칙기반 접근, 구문론적 접근, 구조적 접근, 통계적 접근, 신경망 기반 접근 등이 있다. 본 논문에서는 지문의 구조적인 특징을 바탕으로 관찰되는 특징의 상태가 매순간 변화하는 확률론적 정보추출 방식인 마코프 모델을 적용한 지문분류 방법을 제안한다. 지문 이미지의 전처리 과정을 거친 후 각 클래스 분류를 위해 대표 융선을 찾아 방향정보를 추출하고 이를 이용하여 5가지 클래스로 분류될 수 있도록 설계하였다. 좋은품질(Good)과 나쁜품질(Poor)의 데이터를 포함한 훈련집합을 사용하여 각 클래스별로 학습된 마코프 모델은 임의의 지문이미지 분류시 높은 분류율을 보였다. 또한 기존의 구조적 접근방법에 비하여 다양한 품질의 지문이미지의 방향성 정보를 이용한 확률론적 방법이기 때문에 예외적인 지문이미지 분류시 잘 적용될 수 있다.

  • PDF