본 연구는 분류자동화를 위해 이미 연구된 바 있는 농학 및 의학분야의 AutoBC 시스템에 대한 계속적인 연구의 일환으로 식물학분야의 문헌에 대해 분류자동화가 가능한지의 여부를 CC의 원리를 응용하여 실험 및 검증한 것이다. 분류자동화를 위한 데이터베이스는 원통형과 행렬식의 원리에 의해 설계되었으며, 문헌의 표제나 키워드를 입력하여 자동적인 주제인지 및 분류기호가 생성될 수 있는 윈도우용 자동분류시스템을 새로이 개발하여 실험하였다.
지문영상의 분류는 데이터베이스의 용량이 클 경우 검색시간을 효율적으로 단축시킬 수 있는 핵심적인 기술이다. 따라서 본 논문에서 core point 와 flow-line 추적을 이용한 효율적인 지문 영상 분류 기법을 제안한다. 제안한 방법은 특히 압착 날인된 지문 영상의 분류에 적합한 방법으로 크게 2단계로 이루어져 있다. 첫 번째 단계에서는 먼저 Poincare index를 이용하여 core point를 찾아내고 이를 바탕으로 개략적인 분류를 수행한다. 그 다음 두 번째 단계에서는 core point를 중심으로 flow-line을 추적하여 그 결과를 가지고 세부적인 분류를 수행한다. 세부분류 단계에서는 평활화된 블록의 방향정보를 이용한 효과적인 flow-line 추적 알고리즘과 이를 이용한 새로운 분류 방법이 제안된다. 제안한 방법은 회전이나 이동 그리고 약간의 잡음에 강인한 지문 분류 방법으로 지문입력기를 통하여 획득된 700장의 지문 영상에 적용해 본 결과 93.6%의 분류율을 나타내었다.
본 논문에서는 컨볼루션 신경회로망(CNN: Convolutional Neural Network)과 다양한 분류기들의 결합을 통해 분류성능을 비교하고자 한다. 현재 일반적인 분류기로 알려진 것은 나이브 베이즈(Naive bayes), 트리(Tree), 판별 분석(Discriminant Analysis), 서포트 벡터 머신(SVM: Support Vector Machine) 등이 존재한다. 분류기들은 각각 다른 원리로 분류하기 때문에, 각각 성능을 비교해볼 필요가 있다. 분류기들의 성능을 비교하기 위한 사용한 데이터는 CNN에서 자주 사용되고 있는 MNIST 데이터를 사용하였다. 실험 결과로는 CNN에 선형 SVM을 결합하여 사용한 것이 분류율과 분류속도 측면에서 다른 분류기들의 성능보다 좋은 성능을 보이는 것을 확인할 수 있었다.
최근 다양한 형식의 웹 문서에서 사용자가 원하는 정보만을 검색 하기위해 웹 문서를 주제별로 분류하여 수집하고, 관리하는 것은 필수적인 요소이다. 즉, 정확하고 빠른 정보 검색을 위한 웹 문서 수집은 문서 형식에 따라 분류되어 수집 되어야 한다. 따라서 웹 환경에서 문서를 구성하는 형식을 텍스트나 이미지 데이터로 구분하고 그 형식에 맞는 분류기법을 사용한다면 정확한 정보 검색이 이루어 질수 있다. 본 논문에서는 텍스트와 URL을 이용한 주제 중심의 하이브리드 웹 문서 분류 방법을 제안한다. 텍스트와 URL을 이용한 분류 방법은 텍스트 형식은 주제 중심의 문서 분류방식을 사용하며, 텍스트 정보의 효용성이 낮은 경우 URL의 주제 분포도를 이용하여 분류하며 수집한다. 이를 통해 여러 가지 형식의 웹 문서가 분류 가능하며, 주제에 따른 문서 분류의 정확도가 높아진다.
본 논문에서는 한.영 기계번역을 위한 한국어 품사 분류를 한다. 한국어 표준문법에서 제시되는 품사 분류 기준은 의미, 기능, 형식의 세 가지 기준을 적용하고 있으며, 자연언어처리에서도 같은 분류 기준을 바탕으로 하고 있다. 품사 분류에 여러 가지 기준을 적용하는 것은 문법구조 이해 및 품사 분류를 어렵게 한다. 또한 한.영 기계번역시 품사의 불일치로 전처리가 필요하다. 이러한 문제를 해결하기 위하여 본 논문에서는 하나의 기준을 적용하여 품사 분류를 한다. 방법으로 한국어 표준문법에 의하여 말뭉치에 태깅하고 문제점을 찾아내며, 새로운 기준에 의하여 품사 분류를 한다. 본 논문에서 분류된 품사는 한국어 문장에서 통사적 역할이 동일하고, 영에서의 사전 품사와 동일하다. 또한 품사 분류의 모호성을 제거하고, 한국어의 문장 구조를 명확히 표현하며, 한.영 기계번역시 패턴 매칭에 의한 목적언어 생성이 가능하다.
문서 범주화에 이용되는 학습알고리즘 중에서 이원 패턴인식 문제를 해결하기 위해 제안된 SVM은 다른 분류기 보다 우수한 성능을 보이고 있다. 본 연구에서는 Reuters-21578 (ModApte 분할판)을 대상으로 SVM 분류기를 이용하여 단어빈도, 역문헌빈도, 문헌길이 정규화 공식을 자질에 대한 가중치로 적용하여 성능을 평가하고, 선형 SVM과 비선형 SVM의 분류 성능을 비교하였다. 또한 이원 분류기를 승자독식 방법과 쌍단위 분류방법에 의해 다원 분류기로 확정하여 실험한 후 이원 분류기와의 성능을 비교 분석하였다.
본 논문은 유방질환 중에서 Duct(관)에 발생하는 유방 종양을 benign(양성종양)/DCIS (Ductal Carcinoma In Situ)/NOS(Invasive ductal carcinoma)로 자동 분류하기 위한 분류방법을 제안한다. 분류기 생성에서 가장 중요한 단계인 특징 추출단계에서는 wavelet 변환을 적용하였으며, wavelet 변환의 각 depth에 따라 분류기를 생성하여, depth와 생성된 분류기의 분류 정확도와의 상관관계를 비교.분석하였다. 현미경 100배 배율과 400배 배율의 유방 질환 영상을 1, 2, 3, 4단계(depth)의 wavelet 변환을 적용한 후, 분할된 서브밴드에서 GLCM을 이용하여 질감 특징(Entropy, Energy, Contrast, Homogeneity)을 추출하여, 이 특징값들을 조합하여 판별분석에 의해 분류기(classifier)를 생성한 후, 분류 정확도를 검증하였다. Benign/DCIS/NOS를 분류하려면 최소 3단계 이상의 wavelet 변환을 적용해야 하고, 400배 배율 영상보다는 100배 배율의 영상이 더 나은 결과를 보였다.
메가프로젝트(Mega-Project)는 다양한 유형의 시설군을 복합 개발하는 건설사업으로서 규모가 크고 복잡한 경우가 많기 때문에 종합적인 사업관리에 어려움이 따른다. 따라서 메가프로젝트는 기존의 단위프로젝트 수준이 아닌 프로그램 수준에서의 관리체계를 필요로 하며 그에 적합한 업무분류체계(WBS)를 구축해야 한다. 업무분류체계는 사업관리를 위한 전체적인 구조를 수립하는 기반으로서, 현재 프로그램 관리 수준의 업무분류체계의 기준이 갖추어지지 않은 상황이다. 이에 본 연구에서는 메가프로젝트를 위한 업무분류체계기준(WBS Basis)를 개발하여 메가프로젝트의 업무분류체계 구축을 지원하고자 한다. 메가프로젝트 생애주기에 포함되는 전체 시설군, 업무 및 용역, 기록문서, 정보 등을 대상으로 하였으며, 기존 사례분석과 관련 분류체계들을 바탕으로 초안을 작성하였다. 이후 현장시험을 통한 검증을 거쳐 최종 업무분류체계기준을 완성하였고 분류내용과 활용방안을 소개한다.
국내외 카 백신업체별로 악성 코드의 분류 체계가 마련되어 있지만 각각의 백신업체별로 분류 체계가 차이가 있고 또한 도스 운영체제 때부터 사용한 분류 체계를 그대로 사용하여 현재의 악성 코드 분류와는 많은 차이를 보이고 있다. 이러한 백신업체들의 악성 코드 분류를 정착하게 분류하는 방법으로 본 논문에서 새로운 악성 코드 분류지침과 분류지침에 의한 명명법을 제안한다. 본 논문에서 제안한 분류지침을 토대로 안티-바이러스 산업 및 악성 코드 연구를 활성화시키는 정책 수립의 기초 자료를 사용한 수 있으며, 악성 코드 정보의 체계화 통합화 표준화 등에 기여할 수 있다.
지문분류는 대규모 인증시스템에 사용되는 지문 데이터 베이스를 종류별로 인덱싱 하거나 인식 시스템에 다양하게 쓰이는 매우 중요한 방법이다. 지문은 일반적으로 융선의 전체모양 등 전역적인 특징을 기반으로 분류하며, 분류방법에는 규칙기반 접근, 구문론적 접근, 구조적 접근, 통계적 접근, 신경망 기반 접근 등이 있다. 본 논문에서는 지문의 구조적인 특징을 바탕으로 관찰되는 특징의 상태가 매순간 변화하는 확률론적 정보추출 방식인 마코프 모델을 적용한 지문분류 방법을 제안한다. 지문 이미지의 전처리 과정을 거친 후 각 클래스 분류를 위해 대표 융선을 찾아 방향정보를 추출하고 이를 이용하여 5가지 클래스로 분류될 수 있도록 설계하였다. 좋은품질(Good)과 나쁜품질(Poor)의 데이터를 포함한 훈련집합을 사용하여 각 클래스별로 학습된 마코프 모델은 임의의 지문이미지 분류시 높은 분류율을 보였다. 또한 기존의 구조적 접근방법에 비하여 다양한 품질의 지문이미지의 방향성 정보를 이용한 확률론적 방법이기 때문에 예외적인 지문이미지 분류시 잘 적용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.