• Title/Summary/Keyword: 분광전기화학적 연구

Search Result 33, Processing Time 0.024 seconds

Preparation of Electrochemically Stable and SERS Active Silica@Gold Microshell (전기화학 반응용 표면증강라만산란 활성 실리카@금 마이크로쉘의 제작)

  • Piao, Lilin;Lee, Jihye;Chung, Taek Dong
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2013
  • In order to monitor in situ electrochemical reaction we prepared the gold microshells on silica microspheres of $2{\mu}m$ in diameter which were able to not only work as electrodes but also surface enhanced Raman scattering (SERS) active substrates. Previously reported gold microshell using polystyrene as core material have a few serious problems, mostly coming from solubility in organic solvent, nonuniform distribution in size and toxicity of the polystyrene. Here we prepared silica core-gold microshell to obtain a strong SERS active platform benefitting from the physicochemical stability, uniformity and non-toxicity of silica. Varying the concentration of 3-aminopropyl triethoxysilane (APTES), the surfaces of silica beads were modified and the optimal condition was determined to be 1% APTES that made the SERS activity of gold microshell strongest. The gold microshells as made were characterized by homemade Micro-Raman system spectrometer, Field-Emission Scanning Electron Microscope.

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

A Study on the Electronic Properties and Electrochemical Behavior of Transition Metal(Ⅳ) Complexes (Ⅳ) (전이금속(Ⅳ) 착물들의 전자적 성질과 전기 화학적 거동에 관한 연구(Ⅳ))

  • Choi, Chil Nam;Son, Hyo Youl
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.5
    • /
    • pp.356-363
    • /
    • 1995
  • The chemical behavior of the transition metal (Nb4+ and Mo4+) complexes with organoligand (dichloro-bis(η-cyclopentadienyl) has been investigated by the UV/vis-spectrophotometric, magnetic, and electrochemical method. The two or three energy absorption bands are observed by the spectra of these complexes. The magnitude of crystal field splitting energy, the spin pairing energy and bond strength was obtained from the spectra of the complexes. These are found to be delocalization, low-spin state, and strong bonding strength. The magnetic dipolemoment are found to be paramagnetic and diamagnetic complexes. The redox reaction processes of complexes were investigated by cyclic voltammetry in aprotic media. As a result the redox reaction proceses of Nb-C complex was couple-single reaction with diffusion and reaction current one electron process, and also Mo-C complex was couple-single reaction with reaction current of one electron process.

  • PDF

A Study on the Electronic Properties and Electrochemical Behavior of Rare Earch Metal(Ⅲ) Complexes (Ⅲ) (희토류금속(Ⅲ) 착물들의 전자적 성질과 전기화학적 거동에 관한 연구 (Ⅲ))

  • Choe, Chil Nam;Son, Hyo Yeol
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.590-597
    • /
    • 1994
  • The chemical behavior of the trivalent lanthanide$(Pr^{3+}, Eu^{3+}, Gd^{3+} 그리고 Yb^{3+})$complexes with organo-ligand (2,2,6,6-tetramethyl-3,5-heptanedione) has been investigated by the use of UV/Vis-spectrophotometric, magnetics, and electrochemical method. The two or three energy absorption bands are observed by the spectra of these complexes. The magnetitude of crystal field splitting energy, the spin pairing energy and bond stength was obtained from the spectra of the complexes. These are found to be localization, low-spin (or high-spin state, and strong bonding strength. The magnetic dipole moment are found to be diamagnetic complexes (or paramagnetic). The electrochemical behavior of complexes was observed by the use of cyclic voltammetry in aprotic media. These reduction peaks were irreversible two and three step reduction processes by electron transfer.

  • PDF

Synthesis and Characterization of Octamethylenethiafulvalene Compounds with Osmium, Iridium, Platinium and Gold Chloride (Octamethylenethiafulvalene과 염화오스뮴, 이리듐, 백금 및 금 화합물의 합성과 특성에 관한 연구)

  • Jeong, Chan Kyou;Lee, Hong Woo;Kim, Young Jin;Choi, Sung Nak;Kim, Young Inn
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.442-447
    • /
    • 2001
  • The charge-transfer compound (OMTTF)AuCl$_4$ was prepared from the direct reaction of octamethylenethiafulvalene (OMTTF) with HAuCl$_4{\cdot}xH_2$O in THF. (OMTTF)$_2PtCl_4$, (OMTTF)_2IrCl_6{\cdot}2H_2$O, and (OMTTF)Os$Cl_5{\cdot}THF$ were also formed using $H_2PtCl_6{\cdot}xH_2O$, $H_2IrCl_6{\cdot}xH_2O$ and $H_2OsCl_6$, respectively. The prepared compounds were characterized by magnetic (EPR, magnetic susceptibility), spectroscopic (IR, UV-Vis), electrochemical (CV) methods, and the powdered electrical conductivity measurement. The powdered electrical conductivities at room temperature were ~$10^{-7}S{\cdot}cm^{-1}$. The experimental results show that $OMTTF^+$ monocation radicals exist in all of the prepared compounds. The redox potential of OMTTF supports that $OMTTF^+$ is relatively stable. The magnetic properties indicate that there are significant magnetic interactions between the localized odd electrons on the central metal (Ir and Os) ions and the odd electrons resided on $OMTTF^+$ cation radicals in both (OMTTF) $_2IrCl_6{\cdot}2H_2O$ and (OMTTF)$OsCl_5{\cdot}THF$.

  • PDF

A Study on the Vanadium Oxide Thin Films as Cathode for Lithium Ion Battery Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 리튬 이온 이차전지 양극용 바나듐 옥사이드 박막에 관한 연구)

  • Jang, Ki-June;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.80-85
    • /
    • 2019
  • Vanadium dioxide is a well-known metal-insulator phase transition material. Lots of researches of vanadium redox flow batteries have been researched as large scale energy storage system. In this study, vanadium oxide($VO_x$) thin films were applied to cathode for lithium ion battery. The $VO_x$ thin films were deposited on Si substrate($SiO_2$ layer of 300 nm thickness was formed on Si wafer via thermal oxidation process), quartz substrate by RF magnetron sputter system for 60 minutes at $500^{\circ}C$ with different RF powers. The surface morphology of as-deposited $VO_x$ thin films was characterized by field-emission scanning electron microscopy. The crystallographic property was confirmed by Raman spectroscopy. The optical properties were characterized by UV-visible spectrophotometer. The coin cell lithium-ion battery of CR2032 was fabricated with cathode material of $VO_x$ thin films on Cu foil. Electrochemical property of the coin cell was investigated by electrochemical analyzer. As the results, as increased of RF power, grain size of as-deposited $VO_x$ thin films was increased. As-deposited thin films exhibit $VO_2$ phase with RF power of 200 W above. The transmittance of as-deposited $VO_x$ films exhibits different values for different crystalline phase. The cyclic performance of $VO_x$ films exhibits higher values for large surface area and mixed crystalline phase.

Growth of Two-Dimensional Nanostrcutured VO2 on Graphene Nanosheets (그래핀 나노 시트 위에 2차원 나노구조를 갖는 VO2의 성장)

  • Oh, Su-Ar;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.502-507
    • /
    • 2016
  • Vanadium dioxide, $VO_2$, is a thermochromic material that exhibits a reversible metal-insulator phase transition at $68^{\circ}C$, which accompanies rapid changes in the optical and electronic properties. To decrease the transition temperature around room temperature, a number of studies have been performed. The phase transition temperature of 1D nanowire $VO_2$ with a 100 nm diameter was reported to be approximately $29^{\circ}C$. In this study, 1D or 2D nanostructured $VO_2$ was grown using the vapor transport method. Vanadium dioxide has a different morphology with the same growth conditions for different substrates. The 1D nanowires $VO_2$ were grown on a Si substrate ($Si{\setminus}SiO_2$(300 nm), whereas the 2D & 3D nanostructured $VO_2$ were grown on an exfoliated graphene nanosheet. The crystallographic properties of the 1D or 2D & 3D nanostructured $VO_2$, which were grown by thermal CVD, and exfoliated-transferred graphene nanosheets on a Si wafer which was used as substrate for the vanadium oxide nanostructures, were analyzed by Raman spectroscopy. The as-grown vanadium oxide nanostructures have a $VO_2$ phase, which are confirmed by Raman spectroscopy.

Development of GDH-glucose Sensor using Ferrate Complex (철 화합물을 이용한 당 탈수소화 효소-혈당센서의 연구)

  • Choi, Young-Bong;Lee, Jung-Min;Kim, Samantha Saeyoung;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2014
  • Redox complexes to transport electrons from enzyme to electrodes are very important part in glucose sensor. Pentacyanoferrate-bound aniline ($Fe(CN)_5$-aminopyridine), was prepared as a potential redox mediator in a glucose dehydrogenase (GDH)-glucose sensor. The synthesized pyridyl-$NH_2$ to pentacyanoferrate was characterized by the electrochemical and spectroscopic methods. A amperometric enzyme-linked electrode was developed based on GDH, which catalyses the oxidation of glucose. Glucose was detected using GDH that was co-immobilized with an $Fe(CN)_5$-aminopyridine and gold nano-particles (AuNPs) on ITO electrodes. The $Fe(CN)_5$-aminopyridine and AuNPs immobilized onto ITO electrodes provided about a two times higher electrochemical response compared to that of a bare ITO electrode. As glucose was catalyzed by wired GDH, the electrical signal was monitored at 0.4 V versus Ag/AgCl by cyclic voltammetry. The anode currents was linearly increased in proportion to the glucose concentration over the 0~10 mM range.

A Study on the Electronic Properties and Redox Reaction of Europium(Ⅲ) Complexes in Aprotic Solvent (반 양성자성 용매속에서 Europium(Ⅲ) 착물에 대한 전자적 성질과 산화 · 환원 반응에 관한 연구)

  • Choe, Chil Nam;Son, Hyo Youl;Kim, Se Bong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.65-71
    • /
    • 1996
  • The chemical behaviour of the Eu(Ⅲ) complexes with organic ligands(tris[3-(trifluoromethylhydroxymethylene-camphorato)]) and tris[3-heptafluoropropylhydroxymethylene-camphorato)] has been investigated by the UV/vis-spectrophotometric, magnetic, and electrochemcial methods. The two or three energy absorption bands are observed by the spectra of these complexes. The magnitude of crystal field splitting energy, the spin pair energy and strength were obtained from the spectra of the complexes. These complexes are found to be delocalization, low-spin state, and strong bonding strenth of electron configuration. The magnetic dipolemoment are found to be diamagnetic. The redox reaction processes of complexes were investigated by cyclic voltammetry in aprotic solvent. The redox reaction processes of complexes are turned out to be single or double reaction with respect to one electron diffusion current.

  • PDF

A Study on the Electronic Properties and Redox Reaction of Palladium(Ⅱ) and Platinum(Ⅱ) Alkylsulfoxide Complexes in Aprotic Solvent [Ⅱ] (비양성자성 용매속에서 Pd(Ⅱ)와 Pt(Ⅱ) 알킬슬폭사이드 착물에 대한 전자적 성질과 산화 · 환원반응에 관한 연구 [Ⅱ])

  • Choe, Chil Nam;Son, Hyo Youl;Kim, Se Bong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.10
    • /
    • pp.649-655
    • /
    • 1996
  • The chemical behaviour of Pt(Ⅱ) and Pd(Ⅱ) complexes with the organic ligand tetramethylenesulfoxide(TMSO) has been investigated by UV/vis-spectrophotometric, magnetic, and electrochemical methods. Two energy absorption bands are observed in the spectra of these complexes. The crystal field splitting energy, spin pairing energy, and bond strength were obtained from the spectra of the complexes. The electronic properties of the complexes are found to be delocalized, and low-spin state. The correlation between ligand and metals were strong bonding strength. These complexes are diamagnetics. The redox reaction processes of the complexes were investigated by cyclic voltammetry in an aprotic solvent. The redox processes of complexes turned out to be respect to one-electrton one step. These complexes were considerably diffusion and reaction controlled.

  • PDF