• Title/Summary/Keyword: 북태평양 고기압

Search Result 25, Processing Time 0.033 seconds

The pattern of precipitation in the summertime on the North Pacific High Pressure System in the Northeastern Asia (동아시아의 북태평양 고기압 연변의 하계 강수 패턴)

  • 윤홍주;류찬수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.334-337
    • /
    • 2003
  • The results of this numerical model is usable to analysis for the phenomena of precipitation during the periods of a rainy season in the Northeastern Asia. Case l(start of rainy season) dominates over precipitation by the processing of convection from the equator region through the East China region, and then the most of water vapor is transported by the processing of advection from the India-monsoon region to this study region. Case 2(heavy rainy season) faints precipitation by the processing of convection in the Korean peninsula, but dominates precipitation by the processing of microphysics. the water vapor originates from the India-monsoon region.

  • PDF

Heavy Rainfall Frequency and Synoptic Climate Analysis according to another Threshold (절점기준에 따른 호우사상의 강우빈도 및 종관기후학적 분석)

  • Kim, Tae-Jeong;Kim, Jin-Young;Ryou, Nim-Suk;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.8-8
    • /
    • 2016
  • 최근 기상상태의 불안정으로 인하여 위험기상이 빈번히 발생하고 있다. 우리나라는 지리적으로 단시간에 매우 높은 강우강도를 유발하는 강우사상이 빈번하게 발생하여 홍수사상이 유발되기 쉽다. 기후변동으로 인하여 지난 30년 동안 극한강우의 발생 빈도는 점차 증가하고 있다. 따라서 본 연구에서는 과거부터 현재까지의 강우패턴을 입력 자료로 사용하여 극단적으로 변화하는 강우사상에 대하여 면밀한 분석을 수행하였다. 본 연구에서는 극치강우사상을 분석하는데 있어 서로 다른 절점기준을 사용하였다. 첫째, 6시간 누적 강우량이 70mm를 초과하는 경우이며 두 번째는 1시간 누적 강우량이 30mm를 초과하는 경우로 구분하였다. 강우빈도 해석을 수행함에 있어 확률분포형의 매개변수의 불확실성을 보다 정량적으로 산정할 수 있는 Bayesian 기법을 적용하였으며, 또한 각각의 절점기준에 따라서 분류된 강우사상 발생시 종관기후학적 분석을 수행하였다. 이를 위해 미국 대기해양청 재해석자료를 활용하였다. 연구결과 산악지역의 극치강우 발생 증가를 확인하였으며, 동중국해 지역의 저기압 특성과 북태평양 고기압 특성이 우리나라 극치강우현상에 주로 영향을 미치는 것을 확인하였다.

  • PDF

Synoptic Climatological Characteristics of Autumn Droughts in Korea (한국의 추계한발의 종관기후학적 특성)

  • Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.2
    • /
    • pp.57-69
    • /
    • 2000
  • The purpose of this study is to identify distributional characteristics of autumn droughts in occurrence frequency and to analyze synoptic characteristics on the surface pressure fields and 500hPa levels for autumn droughts in Korea. The regional distributions of autumn droughts in occurrence frequency vary according to the monthly regional distributions of the precipitation variabilities in Korea. In september, the southwestern and the mid western parts of Korean Peninsula have high rate of drought frequency, while the eastern coast regions have low rate of it. It means that the regional distribution of the drought frequency in september indicates west-high and east-low pattern. In October, the regional distribution of the drought frequency shows low variations on regions, but in November the inland areas have low rate of drought frequency, whereas the coastal areas have high rate of it. Negative anomalies appear on the surface and 500hPa level, around Korean Peninsula during the drought period of early autumn. Positive height anomalies areas are extended from the Sea of Okhotsk to the central part of the North Pacific Ocean. It indicates that the occurrence frequencies of blocking high and ridge are high around the Sea of Okhotsk. When the pressure system, such as migratory anticyclone, stays around the Korean Peninsula, a drought occurs. In late autumn drought, the positive anomalies appear in the west and the negative anomalies in the east are generated, respectively and therefore, zonal wind is strong around Korean Peninsula. In consequence, occurrences of droughts in early autumn have a different mechanism from those of late autumn.

  • PDF

Interdecadal Change of Summer Rainfall in the Region of Korea and Northern China (한국-중국 북부지역에서 여름 강수량의 십년간 변동)

  • Choi, Jae-Won;Cha, Yumi;Kim, Jeoung-Yun;Lu, Riyu
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.35-48
    • /
    • 2017
  • This study analyzed the obvious increasing tendency of summer (June to August) rainfall in the region of Korea- and northern China ($35^{\circ}-40^{\circ}N$, $110^{\circ}-130^{\circ}E$) in the late 1990s. In order to investigate the causes of the increase in summer rainfall since 1998, we analyzed the difference of the rainfall average between 1998-2012 and 1981-1997. The analysis of the 850 hPa stream flows showed that the huge anomalous anticyclonic circulations were developed in North Pacific and eastern Australia. In both hemispheres, the anomalous easterlies (anomalous trade winds) were strengthened from the equatorial central Pacific to the tropical western Pacific by the anomalous circulations, which was an anomalous circulation pattern shown in La $Ni{\tilde{n}}a$ years. As for the 200 hPa stream flows, the huge anomalous cyclonic circulations were also developed in both South Pacific and North Pacific. These two anomalous circulations reinforced the anomalous westerlies in the equatorial central and western Pacific, leading to the increase in summer rainfall in the region of Korea- and northern China since the late 1990s in association with La $Ni{\tilde{n}}a$ pattern, which was resulted in strengthening the Walker circulation. Recently in East Asia, the local Hadley circulation has been strengthened in which upward flows in the equatorial western Pacific and mid-latitude region of East Asia have descended in the subtropical western Pacific.

Synoptic Climotological Characteristics of Winter Droughts in Korea (한국의 동계한발의 종관기후학적 특성)

  • Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.4
    • /
    • pp.429-439
    • /
    • 2005
  • The propose of this study is to identify distributional characteristics of winter droughts through occurrence frequencies and to analyze synoptic characteristics on the sea level pressure fields and 500hPa levels in Korea. The regional distributions of winter droughts in occurrence frequency vary according to the monthly regional distributions of the variabilities of precipitation in Korea. In January and December, the eastern parts of Korea where the variabilities of precipitation show high, have high rate of drought frequencies, while the western parts have low rate of it. It means that the regional distribution of the drought frequencies in January and December shows the east-high and west-low pattern, In February the frequencies show the north-high and south-low pattern. In the distributions of the sea-level pressure and 500hPa level height anomalies, the positive anomalies appear around Korean Peninsula and Siberian high area, the negative anomalies on the Aleutian low area and the western parts of North Pacific Ocean during the drought period in January and February. The droughts appear when the inflow of warm and humid air from the south eastern parts blocked by the prevailing pressure patterns of the west-high and east-low. Therefore, the zonal wind of the Korean Peninsula is strong. The droughts of December reflect not only low frequencies of cyclone occurrence, also small inflow of warm and humid air from the southern parts stemming from positive anomalies over whole middle latitude of eastern parts of Asia including Korean Peninsula.

  • PDF

Changes in Means and Extreme Events of Changma-Period Precipitation Since mid-Joseon Dynasty in Seoul, Korea (조선 중기 이후 서울의 장마철 강수 평균과 극한강수현상의 변화)

  • Choi, Gwangyong
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.1
    • /
    • pp.23-40
    • /
    • 2016
  • In this study, long-term changes in means and extreme events of precipitation during summer rainy period called Changma (late June~early September) are examined based on rainfall data observed by Chukwooki during Joseon Dynasty (1777~1907) and by modern rain-gauge onward (1908~2015) in Seoul, Korea. Also, characterizations of the relevant changes in synoptic climate fields in East Asia are made by the examination of the NCEP-NCAR reanalysis I data. Analyses of 239-year time series of precipitation data demonstrate that the total precipitation as well as their inter-annual variability during the entire Changma period (late June~early September) has increased in the late 20th century and onward. Notably, since the early 1990s the means and extreme events during the summer Changma period (late June~mid-July) and Changma break period (late July~early August) has significantly increased, resulting in less clear demarcations of sub-Changma periods. In this regard, comparisons of synoptic climate fields before and after the early 1990s reveal that in recent decades the subtropical high pressure has expanded in the warmer Pacific as the advection of high-latitude air masses toward East Asia was enhanced due to more active northerly wind vector around the high pressure departure core over Mongolia. Consequently, it is suggested that the enhancement of rising motions due to more active confluence of the two different air masses along the northwestern borders of the Pacific might lead to the increases of the means and extreme events of Changma precipitation in Seoul in recent decades.

  • PDF

Climatological characteristics of area averaged monthly precipitation on Han- and Nakdong-river basins for 1954-2002 (한강 및 낙동강 유역평균 월강수량의 기후 특성 분석)

  • Baek, Hee-Jeong;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1223-1227
    • /
    • 2004
  • 강수량의 대부분이 여름철에 집중적으로 내리는 우리나라의 경우 경제기반에 필요한 용수 확보를 위한 댐 수위 조절 등의 수자원 관리를 위해서는 강수량의 장기예측이 매우 중요하다. 그러나 장기예측에 앞서 강수량의 기후 특성 분석은 예측을 위한 기반 자료로서 필요하다. 따라서 한반도 기상 관측소 자료로부터 1954년부터 2002년 49년동안 한강과 낙동강 유역의 유역평균 월강수량의 기후특성을 분석하였다. 유역평균 월강수량은 Thiessen 가중법을 사용하여 산출되었으며, 4월 유역평균 강수량은 감소 경향이 뚜렷하고, 8월 유역평균 강수량은 증가 경향이 매우 뚜렷하였다. 또한 두 유역에 있어서 1970년 중반에 유역평균 월강수량의 변동에 변화가 나타났다. NINO3 지수와 한강과 낙동강 유역평균 월강수량 편차와의 동시상관관계에서 유역평균 9월 강수량은 NINO3 지수와 지속적인 음의 상관을 보였고, 11월 유역평균 강수량과는 양의 상관이 크게 나타났다. 우기 동안 한강 유역평균 월강수량의 극한 사상의 종관 특성 분석을 위한 합성도에서 다우해(above normal year)인 경우에는 주로 대륙에 1000 hPa 고도의 음의 편차, 해양에 양의 편차의 중심이 놓여 있어 다우 시기는 북태평양 고기압의 강화와 관련됨을 알 수 있었다. 또한 8월 유역평균 강수량은 한반도 상공의 제트 강화와 관련되어 있었으며, 9월 유역평균 강수량의 경우에는 제트 출구의 북쪽에서의 양의 편차, 남쪽에서의 음의 편차 및 하층 바람장의 수렴과 관련되어 나타났다.

  • PDF

Characteristics of 1994-95 Summer Monsoon Inferred from SSM/I-derived Water Budget Parameters (SSM/I 대기물수지 변수를 이용한 1994-95년 하계 몬순의 특성 연구)

  • 손병주;김도형;김혜영;서애숙
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.1-16
    • /
    • 1998
  • Microwave brightness temperature data measured from the Special Sensor Microwave/Imager (SSM/I) aboard Defense Meteorological Satellite Program (DMSP) satellite are used to investigate the characteristics of hydrological features of the East Asian summer monsoon during 1994 and 1995. The analyzed parameters include total columnar water vapor, cloud liquid water, and rain rate. These are estimated from SSM/I brightness temperature data for the two summer seasons (June, July, August) of 1994 and 1995 over the Asian monsoon region (0$^{\circ}$-60$^{\circ}$N, 45$^{\circ}$-180$^{\circ}$E). Results indicate that there are periodic westward movement of dry air over the 20$^{\circ}$-30$^{\circ}$N latitudinal belt with about 20-30 day period. Considering that the location of the North Pacific high is closely linked to the evolution of the monsoon activities over East Asia, the westward expansion of the North Pacific high may be the one important element modulating the monsoon intensity.

Wind Castle: The Natural Intelligence Control of Hallasan-Oreum-Batdam I (윈드캐슬: 한라산-오름-밭담의 자연지능 제어 I)

  • Lee, Moon-Ho;Kim, Jeong-Su
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.105-111
    • /
    • 2020
  • We defined Jeju Wind Castle and analyzed the relationship between Hallasan-Oreum-Batdam, the main subject, for the first time. In Jeju, 1.5m high Batdam(Black Silk Road), 368 Oreums, Hallasan Mountain 1950m are all unique scenery. The verification of this paper demonstrates that Samdasoo's groundwater extraction sea level is equal to the height of Hallasan and that this problem is mathematically complete in neutral plane theory. Donnaeko(700meters above sea level)-Baeknokdamdongneung-Jindallebat-Seongpanak-Gyorae(453 meters)-Witsaeoreum(1700meters) is a rain belt that hits the low-air pressure air-conditioned North Pacific humidity rising from the southeast and the high-pressure cold air of Hallasan Peak. It rains a lot because - and + are neutral plane, which adds to zero. Hallasan is called Jinsan in Jeju history. The answer is Wind Castle. The number of Oreum in Jeju is 369 including Hallasan, and Batdam, which is about 1.5m high, does not collapse even with a typhoon blowing over 50m/s. Because the wind castle's core is 1.5 meters of Batdam and it is a triangular number.

Analysis of the Characteristics and High Concentrations of Carbon Dioxide Measured at the Gosan Site in Jeju, Korea in 2007 (2007년 제주 고산의 이산화탄소 농도 현황 및 고농도 사례 분석)

  • Kim, Seung-Yeon;Lee, Jae-Bum;Yu, Jeong-Ah;Hong, Yu-Deog;Song, Chang-Geun
    • Journal of Climate Change Research
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • In order to identify the current state of the $CO_2$ concentrations at the Gosan site in Jeju, the data from the Gosan station was compared with the ones from domestic and foreign sites registered in the World Data Centre for Greenhouse Gases(WDCGG). As a result, the $CO_2$ concentrations in the Asian region including Gosan site were higher than in the other continents, which can be explained that the $CO_2$ emissions in the Asian region have been rapidly increasing due to the recent economic growth. In comparison with ther Asian-Pacific sites (i.e., Ryori, Waliguan, and Mauna Loa), Gosan site showed the highest $CO_2$ concentrations because this site can be easily affected by China emissions. With the trajectory analysis and the ratios of air pollutants, we found that the high concentrations of Gosan site in January were mainly caused by the long-range transport from China, while in August the high concentration in the night time by the stagnation and the active plant respiration. Also, in May and November it occurred as the polluted air from China was transported with migratory cyclone.