• Title/Summary/Keyword: 북동태평양

Search Result 56, Processing Time 0.029 seconds

Regional Occurrence and Sedimentary Environment of Manganese Nodule in KODOS area, C-C zone of NE Pacific (북동태평양 한국 심해저 연구지역 망간단괴의 지역적 분포와 퇴적환경)

  • Chi, Sang-Bum;Kang, Jung-Keuk;Oh, Jae-Kyung;Son, Seung-Kyu;Park, Cheong-Kee
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.257-267
    • /
    • 2003
  • Deep-sea bottom photographs acquired in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific were analyzed to reveal the controlling processes for the spatial variation of manganese nodule. The results show that regional-scale occurrence variations of manganese nodule are mainly controlled by primary productivity of surface water, sedimentation rate, and water depth (or carbonate compensation depth). As a result, the diagenetic accretion on nodules increases toward southwest while hydrogenetic accretion increases toward northeast. Considering the northwestward movement of Pacific Plate, this regional-scale variation of manganese nodule occurrence seems to be affected by oceanic environment during the active growth period (Oligocene-Miocene) of Pacific Plate.

Atmospheric Circulation of Pacific-Japan (PJ) and Typoon induced extremes in the Nakdong River basin (PJ 패턴과 낙동강 유역의 태풍에 의한 극치 사상의 특성변화 분석)

  • Kim, Jong-Suk;Yoon, Sun-Kwon;Moon, Young-Il;Lee, Joo-Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.275-275
    • /
    • 2012
  • 본 연구에서는 Pacific-Japan (PJ) 대기패턴과 북서태평양 지역의 열대성 태풍 활동에 대한 관계를 분석하였다. 특히 한반도에 영향을 미치는 태풍을 중심으로 낙동강 유역의 태풍에 의해 유발된 여름철(June-September) 강수의 지역적 특성 변화를 진단하였다. 분석 결과, 양(+)의 PJ 기간에 발생하는 대기순환패턴의 변화는 태풍의 활동에 보다 유리한 작용을 하는 것으로 나타났다. 한반도에 영향을 미치는 태풍에 대한 진로 분석 결과, 양(+) PJ 기간동안 태풍이 주로 남서쪽으로 향하는 경향이 있으며, 음(-)의 PJ 기간에는 북동쪽으로 향하는 경향이 있는 것으로 나타났다. 태풍 진로의 변향점(recurve)은 양(+)의 PJ 기간에는 보다 북서쪽에 위치하며 음(-)의 PJ 기간에는 보다 북동쪽에 치우쳐 있음이 분석되었다. 따라서, 음(-)의 PJ기간 보다 양(+)의 PJ 기간에 태풍의 활동이 활발하며, 낙동강유역에서 태풍에 의해 유발된 강수가 통계적으로 유의한 증가패턴이 뚜렷하게 발생하고 있는 것으로 확인되었다.

  • PDF

Analysis on the Variability of Korean Summer Rainfall Associated with the Tropical Low-frequency Oscillation (적도 저주파 진동과 관련된 한반도 여름철 강수의 변동성 연구)

  • Moon, Ja-Yeon;Choi, Youngeun;Park, Changyong
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.2
    • /
    • pp.184-203
    • /
    • 2013
  • This study analyzes the variability of Korean summer rainfall associated with the tropical low-frequency oscillation using long-term observation data. From the EOF analysis, the first mode showed opposite phase between the South and the North Korea with the regime shift in rainfall variability since the mid-1990s. The summer precipitation over South Korea tends to increase in southern part during strong El Ni$\tilde{n}$o where the warm sea surface temperature extends to far eastern tropical Pacific. In weak La Ni$\tilde{n}$a, the increased precipitation directly influences from the western tropical Pacific to the mid-latitude. In June, the rainfall over South Korea is positively correlated with the Indian Summer Monsoon while in July, it is negatively correlated with the Western North Pacific Summer Monsoon. In August, highly negative correlation between the rainfall over South Korea and the Indian Summer Monsoon is found.

  • PDF

Meiobenthic Communities in the Deep-sea Sediment of the Clarion-Clipperton Fracture Zone in the Northeast Pacific (북동 태평양 C-C 해역에 서식하는 중형저서동물 군집)

  • Kim, Dong-Sung;Min, Won-Gi;Lee, Kyoung-Yong;Kim, Ki-Hyune
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.265-272
    • /
    • 2004
  • This study was conducted to investigate the community structure and distributional pattern of meiobenthos in the deep-sea bottom of the Clarion-Clipperton Fracture Zone of northeastern Pacific during July 2001. Examination of sediment samples collected on the eight survey station showed that there were 10 different types of meiobenthos. The most abundant meiobenthic animals were nematodes in all stations. Sarcomastigophorans, benthic harpacticoids were next abundant meiobenthos. Vertical distribution of meiobenthic animals showed the highest individual numbers in the surface sediment layers of 0-1 cm depth and showed more steep decreasing trend as sediment gets deeper on the stations of high latitude located in $16-17^{\circ}N$. Horizontal distribution of meiobenthic animal in the study area within CCFZ showed high densities of meiobenthos at the stations had few manganese nodules on their sediment surface in the site of low latitude. For size distribution analyses showed that animals which fit into the sieve mesh size of 0.063 mm were abundant.

Mass Physical Properties in Deep-Sen Sediment from the Clarion-Clipperton Fracture Zone, Northeast Equatorial Pacific (북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 물리적 특성에 관한 연구)

  • Chi, Sang-Bum;Lee, Hyun-Bok;Kim, Jong-Uk;Hyeong, Ki-Seong;Ko, Young-Tak;Lee, Kyeong-Yang
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.739-752
    • /
    • 2006
  • Deep-sea surface sediments acquired by multiple corer from 69 stations in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were examined to understand the correlation of mass physical properties and sedimen-tological processes. The seabed of the middle part ($8-12^{\circ}N$) of the study area is mainly covered by biogenic siliceous sediment compared with pelagic red clays in the northern part ($16-17^{\circ}N$). In the southern part ($5-6^{\circ}N$), water depth is shallower than carbonate compensation depth (CCD). The mass physical properties such as grain size distribution, mean grain size, water content, specific grain density, wet bulk density, void ratio, and porosity of sediments are distinctly different among the three parts of the study area. Surface sediments in northern part are characterized by fine grain size and low water contents possibly due to low primary productivity and high detrital input. Conversely, sediments in the middle part are characterized by coarse grain size and high water contents, which might be caused by high surface productivity and deeper depth than CCD. The sediments show low water contents and high density in the southern part, which can be explained by shallower depth than CCD. Our results suggest that the variations in mass physical properties of sediments are influenced by combined effects including biogenic primary productivity of surface water, water depth, especially with respect to CCD, sedimentation rate, detrital input, and the geochemistry of the bottom water (for example, formation of authigenic clay minerals and dissolution of biogenic grains).

Seasonal Variations of Particle Fluxes in the Northeastern Pacific (북동태평양 심해에서 관측된 퇴적물 입자 플럭스의 계절적 변동)

  • Kim, Hyung-Jeek;Kim, Dong-Seon;Hyeong, Ki-Seong;Kim, Kyeong-Hong;Son, Ju-Won;Hwang, Sang-Chu;Chi, Sang-Bum;Kim, Ki-Hyun;Khim, Boo-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.200-209
    • /
    • 2008
  • Particle fluxes were measured with a time-series sediment trap from July 2003 to June 2005 at the St. KOMO(KOMO; Korea Deep-Sea Environmental Study Long-Term Monitoring Station, $10^{\circ}30'N,\;131^{\circ}20'W$) in the northeastern Pacific. Total mass fluxes at a depth of 4,960 m showed distinct seasonal variations with high values in the winter(December-February) and spring(March-May) and low values in the summer(June-August) and fall(September-November). Biogenic origin fluxes also displayed distinct seasonal variations similar to total mass fluxes. Particularly, calcium carbonate fluxes in winter and spring were more than two times greater than those in summer and fall. The prominent seasonal variations of total mass and biogenic fluxes were closely related with the seasonal changes of primary production in the surface waters; in winter and spring, primary production increased due to the enhanced supply of nutrients below the surface mixed layer by strong wind and less stratification, whereas it decreased as a result of the less supply of nutrient by reduced wind speed and strong stratification in summer and fall. The seasonal variations of total mass and biogenic fluxes in this study were higher than the differences of total mass and biogenic fluxes caused by the environmental changes such as El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ events in the previous studies. In order to understand the effects of El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ on the particle flux, therefore, the seasonal variation of particle flux in the northeastern equatorial Pacific needs to be well defined.

Comparison of Vane-shear Strength Measured by Different Methods in Deep-sea Sediments from KODOS area, NE Equatorial Pacific (북동태평양 KODOS지역 심해 퇴적물의 베인 전단강도 측정 방법에 따른 결과 비교)

  • Chi, Sang-Bum;Jung, Hoi-Soo;Kim, Hyun-Sub;Moon, Jai-Woon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.390-399
    • /
    • 1999
  • Siliceous and calcareous deep-sea core sediments were collected by a multiple corer from the KODOS (Korea Deep Ocean Study) area, northeast equatorial Pacific, to compare vane shear strengths measured by two different apparatuses and in different places of on-board and on-land laboratories. The apparatuses were 1) a hand-held vane with four blades of $2.0{\times}2.0$ cm, and 2) a motorized shear vane system with four blades of $1.0{\times}0.88$ attached on a rotational viscometer. Depth profiles of shear strengths of core samples determined by the apparatuses do not show any consistent difference. Also, there is no consistent difference between shear strength values measured on-board and on-land laboratories after storing the core samples for three months in a cold room by a motorized shear vane system. However, there are considerable differences between depth profiles of shear strengths measured at four different points (holes) of a core sample. Moreover, significant differences among the profiles of different tube samples from a multiple corer within a sampling station were observed. Heterogeneity in physical properties of each depth and sediment column, possibly due to bioturbation and bottom current flows, is likely responsible for the differences in the geotechnical properties.

  • PDF

Vertical Distribution and Composition of Dissolved Free Amino Acids in the Northeast Pacific Ocean (북동태평양 해역의 용존 자유아미노산 분포 및 조성 연구)

  • Son, Seung-Kyu;Park, Yong-Chul;Lee, Kyeong-Yong;Kim, Ki-Hyune;Lee, Hyo-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.289-297
    • /
    • 1999
  • Concentrations of total dissolved free amino acids (DFAAs) in the northeast Pacific Ocean $9^{\circ}54'-10^{\circ}27'N$, $131^{\circ}43'-131^{\circ}53'W$) ranged from 15.9 to 1778.2 17M, and the average was 407.2 nM. Concentrations of DFAAs in surface mixed layers, ranged from 60.1 to 1411.9 nM, and the average was 535.2 nM. Seasonal thermoclines with maxima were formed between the depth of 50 to 150 m. DFAAs in this layer were varied in concentrations from 91.7 to 1778.2 nM, and the average was 588.5 nM. DFAAs below the seasonal thermoclines fluctuated from 15.9 to 384.2 nM, and the average was 175.1 nM. Consequently, in average relatively abundant DFAAs were observed in the subsurface layer than the deeper layer. DFAA vertical profiles and compositions of station A showed similar to station Band C. Glycine, alanine, glutamic acid, serine and valine were predominant accounting for more than 60% of total amino acids. Isoleucine, tyrosine, methionine and phenylalanine comprised only few percents of total DFAAs in the study area. In mole % of amino acid, according to characteristics of functional group of amino acid, aliphatic neutral accounted for 59% and aliphatic hydroxy 16%, acidic 12%, respectively. Although differences in DFAA concentrations with depth were observed, the amino acid composition and mole % of deeper layers in all stations were similar to those of subsurface layers. The results indicate that individual DtAAs remains invariably in water columns relative to the compositions and distributions of DFAAs in the study area, which may be the result of close coupling between microbial activity and their water solubility.

  • PDF

Paleo-latitude of the Intertropical Convergence Zone in the Northeast Pacific during Late Cenozoic (신생대 후기 북동태평양 지역 적도수렴대의 위치변화)

  • Hyeong, Ki-Seong;Kim, Ki-Hyune;Chi, Sang-Bum;Yoo, Chan-Min
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.245-253
    • /
    • 2004
  • The Intertropical Convergence Zone (ITCZ), where the southeast and northeast trade winds converge, is the effective climatological barrier that separates the southern and northern hemispheres in dust budget. Asian and N. American dusts dominate in fhe Pacific north of the ITCZ, while Central and S. American dust prevails south of the ITCZ. In order to understand the nature of latitudinal and depth-related variations of mineral composition in terms of relative position to the ITCZ, deep-sea core sediments were collected from $9^{\circ}N$ to $17^{\circ}N$ at a $2^{\circ}N$ interval along the $131.5^{\circ}W$ meridian and analyzed for mineral composition. The amount of illite in surface sediments decreases gradually from 65% at $17^{\circ}N\;to\;31^{\circ}N$ to 31% at 9f. In contrast, smectite increases from 11% to 56% southward. The observed mineralogical variation toward the ITCZ is attributed to the increased supply of volcaniclastic material transported via the southeast trade winds from the Central and South America source regions. Smectite-illite transition, a phenomenon that the amount of smectite increases over illite, occurs at around $10^{\circ}N$, the northern margin of the ITCZ. This result indicates that the change in latitudinal position of the ITCZ in geologic past could be recorded as a form of smectite-illite transition in deep-sea cores. The studied cores show down-core variation of mineral composition from illite-rich at the surface to smectite-rich clay suit at depths, similar to the latitudinal variation. The smectite-illite transitions observed in these cores are likely the records of changes in latitudinal position of the ITCZ. The depth and age of smectite-illite transition is getting shallower and younger toward equator, implying that the ITCZ was located farther north during late Tertiary and has shifted southward to the present position of $5^{\circ}N-10^{\circ}N$.

High Resolution Elements Analysis in N-E Pacific Sediments using XRF Core Scanner (XRF 코어스캐너를 이용한 북동태평양 퇴적물 내 원소의 고해상분석)

  • Um, In-Kwon;Kim, Ji-Hoon;Nam, Seung-Il;Choi, Hun-Soo;Park, Ok-Boon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.129-138
    • /
    • 2009
  • The XRF core scanner was used, to analyze high resolution chemical elements in deep sea sediment cores from Clarion-Clipperton fracture zone of the northeastern Pacific. Comparison of data estimated by the XRF core scanner with ICP-AES showed relatively weak correlation coefficients between elements (especially Ba, Pb, Sr, Zr) except for Mn contents ($r^2$ > 0.89). However down-core variations of most elements seemed to be well matched each other and furthermore, XRF core scanner data reflected changes of sedimentary facies characterized by sediment colors. Mn/Al ratio dramatically changed at boundaries of facies in BC08-02-05 and BC08-02-13 but progressive changes occured in BC08-02-02, BC08-02-09 and BC08-02-10 where the sediments have been affected by bioturbations. The difference of Mn/Al ratio in each facies (Facies I, Facies II, Facies III) has been caused by redox condition of depositional environment. Vertical change of Mn/Al ratio were divided into two types probably affected by activities of benthic organisms in the study area.