• Title/Summary/Keyword: 부착매질

Search Result 35, Processing Time 0.027 seconds

A Study of Quality Control of Nuclear Medicine Counting System and Gamma Camera (핵의학 계측기기 및 감마카메라의 정도관리 연구)

  • 손혜경;김희중;정해조;정하규;이종두;유형식
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.103-112
    • /
    • 2001
  • Purpose: The purpose of this study was to investigate the current status of performing nuclear medicine quality control in korea and to test selected protocols of quality control of nuclear medicine counting system and gamma camera. Materials and Methods: Fifty three hospitals were included to investigate the current status of nuclear medicine quality control in korea. The precision of dose calibrator and thyroid uptake system was measured with Tc-99m 35.52 MBq for 2 minuets and Tc-99m 5.14 MBq for 10 sec every one minute, respectively. The sensitivity of CeraSPECT$^{TM}$ with low energy high resolution parallel hole collimator was measured using two cylindrical phantoms with 15 cm in diameter and 12 cm and 30 cm in heights containing Tc-99m. The correction factor for sensitivity of CeraSPECT$^{TM}$ was calculated using phantom data. The system planar sensitivity, uniformity, count rate and spatial resolution were measured for Varicam gamma camera with low energy high resolution parallel hole collimator using 140 keV centered 20% energy window, 256$\times$256 or 512$\times$512 matrix sizes. Results: The quality control of dose calibrator and well counter were showed poor performance status. On the other hand, The quality control of gamma camera and other systems were showed relatively good performance status. The results of precision of dose calibrator and thyroid uptake system was $\pm$1.4%(<$\pm$5%) and chi^2=29.7(>16.92), respectively. It showed that the sensitivity of CeraSPECT$^{TM}$ was higher in center slices compared with the edge slices. After correction of nonuniform sensitivities for patient data, it showed better results compare with prior to correction. System planar sensitivity of Varicam gamma camera was 4.39 CPM/MBq. The observed count rate at 20% loss was 102,407 counts/sec (head 1), 113,427 counts/sec (head 2), when input count rate was 81,926 counts/sec (head 1), 90,741 counts/sec (head 2). The spatial resolution without scatter medium were 8.16 mm of FWHM and 14.85 mm of FWTM. The spatial resolution with scatter medium were 8.87 mm of FWHM and 18.87 mm of FWTM. Conclusion: It is necessary to understand the importance of quality control and to perform quality control of nuclear medicine devices.vices.

  • PDF

Effect of the Particle Size and Unburned Carbon Content on the Separation Efficiency of Fly ash in the Countercurrent Column Flotation (向流컬럼浮選機에서 石炭灰의 크기 및 未燃炭素 含量이 分離特性에 미치는 영향)

  • 이정은;이재근
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.36-44
    • /
    • 2000
  • Fly ash was composed of the unburned carbon and mineral particles. The former was able to attach on the bubbles, while the latter was not. Therefore, it was possible to separate the unburned carbon and the mineral from fly ash using the froth flotation process. This study was carried out to evaluate the separation efficiency as a function of the ny ash particle properties in the column flotation. Separation efficiency was analyzed for various size fraction of -38 fm,38~125 fm and 1125 W, and for various fly ash samples containing 7, 11, and 20 wt% unburned carbon. For the size fractions of -38 fm containing 7 wt% unburned carbon, separation efficiency was 86ft, whereas separation efficiency was found to be 74% for the size fraction of +125$\mu\textrm{m}$ containing 20 wt% unburned carbon. The results indicated that separation efficiency increased with the decrease in the particle size and the unburned carbon content of the fly ash.

  • PDF

Calculation of the Electromagnetic Fields Distribution around the Human Body and Study of Transmission Loss Related with the Human Body Communication (인체 통신에 따른 인체 주변에서의 전기장 분포 계산 및 전송 손실 연구)

  • Ju, Young-Jun;Gimm, Youn-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.251-257
    • /
    • 2012
  • Human body communication means transmitting and receiving data through human body medium or through free space along with the human body skin. Electric field distribution around the human body between the transmitter and the receiver were calculated at five different frequencies with 5 MHz interval between 10 MHz and 30 MHz. Commercial electromagnetic simulation tool was used for the calculation of E-field distributions applying the Korean standard male model including 29 different kinds of human tissues. After calculating specific absorption rate(SAR) values on back of the hand, it was compared with International Commission on Non-Ionizing Radiation Protection(ICNIRP) human protection guideline. While conductivities(${\sigma}$) and relative permittivities(${\varepsilon}_r$) of the human tissues for each frequency were input as the analyzing parameters, electric field intensities near both hands were integrated along the integral line between the nearby electrodes for the calculation of the transmitting and receiving voltages whose ratio was defined as channel loss. The calculated channel losses were about ($75{\pm}1$) dB and showed nearly flat response all through the evaluated frequencies.

Submucosal Tumor Analysis of Endoscopic Ultrasonography Images (내시경 초음파 영상의 점막하 종양 분석)

  • Kim, Kwang-Baek
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1044-1050
    • /
    • 2010
  • Endoscopic ultrasonography is a medical procedure in endoscopy combined with ultrasound to obtain images of the internal organs. It is useful to have a predictive pathological manifestation since a doctor can observe tumors under mucosa. However, it is often subjective to judge the degree of malignant degeneration of tumors. Thus, in this paper, we propose a feature analysis procedure to make the pathological manifestation more objective so as to improve the accuracy and recall of the diagnosis. In the process, we extract the ultrasound region from the image obtained by endoscopic ultrasonography. It is necessary to standardize the intensity of this region with the intensity of water region as a base since frequently found small intensity difference is only to be inefficient in the analysis. Then, we analyze the spot region with high echo and calcium deposited region by applying LVQ algorithm and bit plane partitioning procedure to tumor regions selected by medical expert. For detailed analysis, features such as intensity value, intensity information included within two random points chosen by medical expert in tumor region, and the slant of outline of tumor region in order to decide the degree of malignant degeneration. Such procedure is proven to be helpful for medical experts in tumor analysis.

Feature Analysis of Endoscopic Ultrasonography Images (내시경 초음파 영상의 특징 분석)

  • Kim, kwang-beak;Kang, hyo-joo;Kim, mi-jeong;Kim, gwang-ha
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.390-397
    • /
    • 2009
  • Endoscopic ultrasonography is a medical procedure in endoscopy combined with ultrasound to obtain images of the internal organs. It is useful to have a predictive pathological manifestation since a doctor can observe tumors under mucosa. However, it is often subjective to judge the degree of malignant degeneration of tumors. Thus, in this paper, we propose a feature analysis procedure to make the pathological manifestation more objective so as to improve the accuracy and recall of the diagnosis. In the process, we extract the ultrasound region from the image obtained by endoscopic ultrasonography. It is necessary to standardize the intensity of this region with the intensity of water region as a base since frequently found small intensity difference is only to be inefficient in the analysis. Then, we analyze the spot region with high echo and calcium deposited region by applying LVQ algorithm and bit plane partitioning procedure to tumor regions selected by medical expert. For detailed analysis, features such as intensity value, intensity information included within two random points chosen by medical expert in tumor region, and the slant of outline of tumor region in order to decide the degree of malignant degeneration. Such procedure is proven to be helpful for medical experts in tumor analysis.

  • PDF