• Title/Summary/Keyword: 부정어휘

Search Result 48, Processing Time 0.026 seconds

A Sentiment Classification System Using Feature Extraction from Seed Words and Support Vector Machine (종자 어휘를 이용한 자질 추출과 지지 벡터 기계(SVM)을 이용한 문서 감정 분류 시스템의 개발)

  • Hwang, Jae-Won;Jeon, Tae-Gyun;Ko, Young-Joong
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.938-942
    • /
    • 2007
  • 신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.

  • PDF

A Product Review Analysis System using Rules and Statistical Information (규칙과 통계 정보에 기반을 둔 상품평 분석 시스템)

  • Kim, Minho;Choi, Hyunsoo;Kwon, Hyuk-Chul
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.257-259
    • /
    • 2013
  • 상품평은 구매 예정자의 의사 결정에 큰 도움을 준다. 그러나 하나의 상품에 관한 상품평의 수가 많고 의견도 다양하여 모든 상품평을 읽고 상품에 대한 직관적인 판단을 내리기가 어렵다. 본 논문에서는 하나의 상품에 대한 모든 상품평을 분석하고 각각의 속성별로 극성(긍정, 부정) 정보를 추출하여 구매 예정자에게 제공함으로써 해당 상품이 어떠한 평가를 받고 있는지 빠른 판단이 가능하게 한다. 한국어의 언어적 특징을 반영하여 속성별 어휘 자질을 추출하고 이를 바탕으로 상품의 속성별 극성을 판단한다. 또한, 기구축한 속성별 어휘 사전의 자료부족 문제로 말미암아 상품평을 분석할 수 없을 때는 전체 어휘의 극성정보를 이용하여 상품의 전체 극성을 판단한다.

A Domain Adaptive Sentiment Dictionary Construction Method for Domain Sentiment Analysis (도메인 별 감성분석을 위한 도메인 맞춤형 감성사전 구축 기법)

  • Kim, Dahae;Cho, Taemin;Lee, Jee-Hyong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.15-18
    • /
    • 2015
  • SNS의 확산으로 대중들은 제품, 서비스, 사회적 이슈 등 다양한 도메인에 대하여 자신의 기분이나 의견을 적극적으로 표현하고 있다. 이에 따라 SNS를 분석하여 제품의 수요, TV 시청률, 주가 등의 다양한 현상을 예측하는 데 있어 감성분석을 활용하는 연구가 활발히 진행되고 있다. 감성분석은 각 어휘에 대한 품사, 극성, 감성지수를 규정하고 있는 감성사전을 기반으로 이루어진다. 하지만 동일한 단어라도 도메인에 따라 중요도가 달라지기 때문에 도메인의 특성을 고려한 감성사전을 사용해야 할 필요성이 있다. 따라서 본 연구에서는 다양한 도메인에 대하여 각각의 특성에 맞게 더욱 정확한 감성분석을 할 수 있도록 도메인 맞춤형 감성사전을 구축하는 기법을 제안한다. 도메인 별로 긍 / 부정 평가에 있어 중요한 척도가 되는 단어들을 도메인 감성어휘로 선별하여 목록을 구축하고, 각 감성어휘의 중요도에 따라 도메인 감성지수를 새롭게 정의하였다. 실험 결과, 평가 도메인에 적합한 감성사전이 다른 도메인의 감성사전 및 범용 감성사전보다 우수한 성능을 보였다. 이를 통해 도메인 맞춤형 감성사전 구축기법의 효용성을 확인하였다.

  • PDF

A method to sequentially use lexical features for effective sentiment categorization of Korean Customer Reviews (효과적인 상품평 감정 분류를 위한 어휘 자질의 순차적 사용 방법)

  • Shin, Jun-Soo;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.151-154
    • /
    • 2009
  • 인터넷이 크게 발전하면서 현재는 인터넷으로 쉽게 쇼핑을 할 수 있다. 이 때 물건의 구입에 큰 영향력을 미치는 것이 바로 그 물건의 상품평이다. 하지만 실제로 수많은 상품평을 사용자가 일일이 확인하고 판단하는 데에는 많은 시간이 소모된다. 이러한 문제점을 해결하기 위해서 본 논문에서는 상품평 문장을 일반, 긍정, 부정의 세 단계로 나누는 시스템을 제안한다. 감정을 판단하는데 중요한 역할을 하는 품사에 따라 우선순위를 달리하여 자질을 추출한다. 추출된 자질을 사용하여 Paul Graham을 사용하여 가중치를 계산하고 기계학습을 한다. 실험은 일반과 감정(긍정, 부정)으로 분류하는 실험과 긍정과 부정으로 분류하는 실험을 하였다. 실험 결과 품사에 우선순위를 사용하여 만든 시스템이 기본 시스템보다 더 적은 자질을 사용하고 더 높은 성능을 보였다.

  • PDF

Migrant Representation in the English-language Media during the Brexit Campaign (브렉시트 캠페인 기간 동안 영어 미디어에 나타난 이민자들)

  • Lee, Jae-Seung
    • Cross-Cultural Studies
    • /
    • v.45
    • /
    • pp.325-348
    • /
    • 2016
  • This study aims to identify the representation of migrants in the English-language media during the Brexit campaign period. For the purpose of this study, the methodological tool of corpus-assisted discourse studies(CADS) was employed and a collection was compiled of articles mentioning Brexit in British, American, Canadian, and Australian media from April 15 to June 22, 2016 in order to compare their portrayals of migrants. To examine how IMMIGRANT, MIGRANT, and REFUGEE are represented in the media, their collocates were analyzed by MI score and categorized by social actor categorization(Van Leeuwan, 1996). The results show that IMMIGRANT is related to collocates that refer to legal status and provenance, MIGRANT associated with economic terms, and REFUGEE relates to terms expressing quantities. The results also reveal that migrants are frequently depicted by functionalization, classification, and appraisement categorization and are more negatively portrayed in British and American media. This paper claims that corpus-assisted linguistic analysis of words enables one to identify salient linguistic patterns or lexical choices in the discourses about a particular phenomenon or group of people.

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.

Recognition of Korean Implicit Citation Sentences Using Machine Learning with Lexical Features (어휘 자질 기반 기계 학습을 사용한 한국어 암묵 인용문 인식)

  • Kang, In-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5565-5570
    • /
    • 2015
  • Implicit citation sentence recognition is to locate citation sentences which lacks explicit citation markers, from articles' full-text. State-of-the-art approaches exploit word ngrams, clue words, researcher's surnames, mentions of previous methods, and distance relative to nearest explicit citation sentences, etc., reaching over 50% performance. However, most previous works have been conducted on English. As for Korean, a rule-based method using positive/negative clue patterns was reported to attain the performance of 42%, requiring further improvement. This study attempted to learn to recognize implicit citation sentences from Korean literatures' full-text using Korean lexical features. Different lexical feature units such as Eojeol, morpheme, and Eumjeol were evaluated to determine proper lexical features for Korean implicit citation sentence recognition. In addition, lexical features were combined with the position features representing backward/forward proximities to explicit citation sentences, improving the performance up to over 50%.

Emotion Classification in Dialogues Using Embedding Features (임베딩 자질을 이용한 대화의 감정 분류)

  • Shin, Dong-Won;Lee, Yeon-Soo;Jang, Jung-Sun;Lim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.109-114
    • /
    • 2015
  • 대화 시스템에서 사용자 발화에 대한 감정 분석은 적절한 시스템 응답과 서비스를 제공하는데 있어 매우 중요한 정보이다. 본 연구에서는 단순한 긍, 부정이 아닌 분노, 슬픔, 공포, 기쁨 등 Plutchick의 8 분류 체계에 해당하는 상세한 감정을 분석 하는 데 있어, 임베딩 모델을 사용하여 기존의 어휘 자질을 효과적으로 사용할 수 있는 새로운 방법을 제안한다. 또한 대화 속에서 발생한 감정의 지속성을 반영하기 위하여 문장 임베딩 벡터와 문맥 임베딩 벡터를 자질로서 이용하는 방법에 대해 제안한다. 실험 결과 제안하는 임베딩 자질은 특히 내용어에 대해 기존의 어휘 자질을 대체할 수 있으며, 데이터 부족 문제를 다소 해소하여 성능 향상에 도움이 되는 것으로 나타났다.

  • PDF

A Study on Image Sensibility Evaluation (이미지의 감성평가에 대한 연구)

  • Lyu, Ki-Gon;Sun, Dong-Eun;Han, Jung-Soo;Kim, Hyeon-Cheol
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1697-1698
    • /
    • 2013
  • 정보처리 기술이 발전함에 따라 정보에 대한 접근과 소통은 더욱 빠르고 편리하게 되었고, 동시에 사용자의 정보에 대한 요구 또한 세분화되고 다양해지면서, 이러한 다양한 요구에 대응하기 위해서 사용자의 경험과 소통하여 인지과정에 영향을 줄 수 있는 감성이 중요하게 인식되고 있다. 감성은 동일한 외부자극에 대해 개인의 경험, 환경 등에 따라 다르게 나타나기 때문에 객관적으로 측정하기가 어렵지만, 외부자극에 대해 반사적이고 직관적으로 발생하여 의사결정 과정에 지속적으로 영향을 주기 때문에 사용자의 경험과 소통하여 사용자의 요구를 이해할 수 있는 정보를 제공한다. 본 논문에서는 이미지 공유 사이트를 이용하여 이미지라는 외부자극에 대해 사용자들이 느낀 어휘들을 수집하고 긍정과 부정 감성을 분석하여 어휘를 기반으로 이미지의 감성을 측정하고 평가하였다.

Dictionary-Based Opinion Features Extraction and Classification of Korean Product Reviews (사전기반의 한국어 상품 리뷰 의견표현 자질 추출 및 분류시스템)

  • Sangguen Yuk
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.631-634
    • /
    • 2008
  • 인터넷을 이용한 사람들의 사회 참여가 확대되면서 다양한 의견(Opinion)들이 급속도로 증가하고 있으며 이러한 의견을 분석하여 유용한 정보로 활용하기 위한 연구가 활발히 진행되고 있다. 그 중에서도 상품리뷰는 기업에서 연구, 개발, 마케팅의 주요 자료로 사용되고 있으며 사용자가 상품의 구매를 결정하는 중요한 요인 중 하나로 작용하고 있다. 본 논문에서는 한국어로 이루어진 상품 리뷰를 분석하여 의견 자질(Feature)을 추출하고 분류(Classification)하는 시스템을 설계하고 구현하였다. 한글 의견 자질 추출을 위하여 먼저 한글 상품 리뷰를 분석하여 의견 사전을 구축하였다. 의견 사전으로는 의견 자질과 의견 어휘, 독립의견어휘, 의견 숙어, 부정어 등의 각기 다른 세부 사전을 구축하여 리뷰 분석 시 단계적으로 적용하여 정확도를 높일 수 있도록 설계하였다. 이렇게 구현된 시스템을 평가하기 위하여 각기 다른 3개의 도메인에서 실제 한국어 리뷰를 수집하여 실험을 수행하였으며 자질 추출에서는 평균 78.86% 정확률, 61.41% 재현율을, 극성 분류에서는 평균 69.46% 정확률, 42.26% 재현율을 나타냈다.