• Title/Summary/Keyword: 부유식 액화천연가스

Search Result 10, Processing Time 0.02 seconds

Process Simulation of the BOG Re-Liquefaction system for a Floating LNG Power Plant using Commercial Process Simulation Program (상용 공정시뮬레이션 프로그램을 이용한 부유식 LNG 발전설비의 BOG 회수시스템 공정모사)

  • Seo, Ju-Wan;Yoo, Seung-Yeol;Lee, Jae-Chul;Kim, Young-Hun;Lee, Soon-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.732-741
    • /
    • 2020
  • Environmental regulations have recently been strengthened. Consequently, floating LNG(Liquefied Natural Gas) power plants are being developed, which are new power generation plants that generate electricity by utilizing LNG. A floating LNG power plant generates BOG(Boil-Off Gas) during its operation, and the system design of such a plant should be capable of removing or re-liquefying BOG. However, the design of an offshore plant differs according to the marine requirements. Hence, a process simulation model of the BOG re-liquefaction system is needed, which can be continuously modified to avoid designing the floating LNG power plant through trial and error. In this paper, to develop a model appropriate for the floating LNG power plant, a commercial process simulation program was employed. Depending on the presence of refrigerants, various BOG re-liquefaction systems were modeled for comparing and analyzing the re-liquefaction rates and liquid points of BOG. Consequently, the BOG re-liquefaction system model incorporating nitrogen refrigerants is proposed as the re-liquefaction system model for the floating LNG power plant.

Advanced Dual Refrigerant Expansion Cycle for LNG Liquefaction (천연가스 액화용 이중 냉매 팽창 사이클)

  • Kim, Minki;Kim, Mungyu;Lee, Kihwan;Kim, Hyobin;Lee, Donghun;Min, Joonho;Kim, Jinmo
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.46-55
    • /
    • 2019
  • This paper presents a LNG Liquefaction cycle configuration using two stages of methane expansion (i.e. spliting into two stages as warm & cold to generate an additional inflection point within a cold composite curve) and a single stage of nitrogen expansion to improve the efficiency of the conventional Methane & Nitrogen Expansion Cycle. In comparison with Double Nitrogen Expansion Cycel and Methane & Nitrogen Expansion Cycle, the cycle efficiency has increased approximately from 13.92 and 13.13 to 12.08 kW/ton/day (8~15% efficiency increase). A Life Cycle Cost (LCC) analysis based on Net Present Value (NPV) also show an improvement in therms of project NPV, against a minor increment of a CAPEX.

Vibration Reduction of Vertical Pumps Used in the Power Plant Circulating Water System (발전소 순환수계통 수직펌프의 진동저감에 관한 연구)

  • Park, Hyeok;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.9 no.1
    • /
    • pp.43-49
    • /
    • 2013
  • In this study, the natural frequency of the actual operating vertical pump in the P combined cycle power plant is measured and the cause of high vibration is determined by using fluid-structure coupled vibration theory. Choosing the vibration reduction plan suited for field conditions and using the numerical analysis verify effectiveness of the plan. The plan is applied to the actual pump and the empirical experiments are conducted.

  • PDF

A Comparative Study on Power System Harmonics for Offshore Plants (해양플랜트 전력시스템의 고조파 비교분석에 관한 연구)

  • Kim, Deok-Ki;Lee, Won-Ju;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.900-905
    • /
    • 2016
  • The field of power system harmonics has been receiving a great deal of attention recently. This is primarily due to the fact that non-linear (or harmonic-producing) loads comprise an ever-increasing portion of what is handled at a typical industrial plant. The incidence rate of harmonic-related problems is low, but awareness of harmonic issues can still help increase offshore power plant system reliability. On the rare occasion that harmonics become a problem, this is either due to the magnitude of harmonics produced or power system resonance. This harmonic study used an electrical configuration for the offloading scenario of a Floating LNG (FLNG) unit, considering power load. This electrical network configuration is visible in the electrical network load flow study part of the project. This study has been carried out to evaluate the performance of an electric power system, focusing on the harmonic efficiency of an electrically driven motor system to ensure offshore plant safety. In addition, the design part of this study analyzed the electric power system of an FLNG unit to improve the safety of operation and maintenance.

Development of the Pre-treatment Technology for LNG-FPSO (LNG-FPSO용 천연가스 전처리 기술 개발)

  • Jee, Hyun-Woo;Lee, Sun-Keun;Jung, Je-Ho;Min, Kwang-Joon;Kim, Mi-Jin
    • Plant Journal
    • /
    • v.9 no.3
    • /
    • pp.38-42
    • /
    • 2013
  • Submarine gas fields have focused because of the increasing fuel cost, the environmental regulations, and the safety & NIMBY problems. LNG-FPSO which is available for acid gas removal, recovery of the condensate & LPG and Liquefaction in topside process is one of high technology offshore structures. On the other hands, it is necessary to verify the pre-treatment efficiency by the ship motion and to apply to the design for LNG-FPSO. This study is to develop the pre-treatment technology for LNG-FPSO as taking account to the process efficiency by ship motion effects and the area optimization. Based on the simulation results, it founds that hybrid process shows the low circulate rate, the low heat duty and the small size of column dimensions compared to typical amine process. It will be verified the process efficiency in the various conditions by sea states as performing the 6-DOF motion test and CFD simulation.

  • PDF

Energy System Analysis of LNG-FPSO Pre-Ttreatment Processes by Heat Integration Technique (LNG-FPSO 전처리 공정 에너지 시스템 분석)

  • Cho, Ha-bin;Kim, Jin-Kuk;Min, Kwang-Jun;Lim, Dong-Ha
    • Plant Journal
    • /
    • v.8 no.4
    • /
    • pp.40-44
    • /
    • 2012
  • The pre-treatment of natural gas to remove $H_2S$ and $CO_2$ before liquefaction in natural gas processing is required, and amine-based absorption processes are widely used in gas processing. The current study aims to model amine-based absorption process and to find cost-effective design through systematic analysis of energy systems, together with column design. Different design options for absorber and stripper are investigated in a holistic manner, and heat integration technique has been applied to investigate how design of columns is interacted with energy efficiency for the pre-treatment process considered. Case study has been presented to demonstrate the applicability of heat integration method for improving energy efficiency in practice.

  • PDF

Heat Transfer Characteristics of Plate-fin Heat Exchanger Using LNG FPSO Liquefaction Process (LNG FPSO 액화공정에 적용되는 플레이트 핀 열교환기의 열전달 특성)

  • Yoo, Sun-Il;Kim, Hyun-Woo;Jung, Young-Kwon;Yoon, Jung-In;Park, Seung-Ha;Kim, Chang-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.798-805
    • /
    • 2010
  • There are no domestic researches of plate fin heat exchanger in the field of cryogenic such as LNG FPSO liquefaction plant. In this study, condensing heat transfer characteristics of nitrogen according to three kinds of fin type in the plate fin heat exchanger were analyzed through simulation and experiment to secure independent technologies. In the simulation, nitrogen was condensed at 69bar and $-140^{\circ}C$ in serrated and wavy fin of plate-fin heat exchanger. The serrated fin shows the highest value of local heat transfer coefficient, followed by wavy and plain fin. The experimental results were shown errors less than 12% comparing with the simulation results.

Extreme Mooring Analysis of Turret Moored LNG-FSRU (터렛 계류된 LNG-FSRU의 극한 계류 해석)

  • Lee, Min-Kyeong;Jung, Kwang-Hyo;Park, Sung-Boo;Yu, Byeong-Seok;Chung, Yun-Suk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.435-446
    • /
    • 2016
  • In this study, hydrodynamic and mooring analysis for LNG FSRU moored by an internal turret with 9 mooring lines are numerically performed using commercial softwares, Hydrostar and Ariane. Met-ocean combinations for screening method are taken from wave governed condition(BV Rule Note NR 493) with relative heading between wave and wind between −45° and +45° and relative heading between wind and current between −30° and +30°. Extreme mooring analysis and sensitivity analysis are performed for intact and damaged (=one line missing) conditions and the parameters for sensitivity analysis are wave peak period, peak enhancement factor and line pretension. In the viewpoint of the design tension in mooring line, chain diameter is designed to satisfy safety factor for each conditions. As the chain diameter is increased from 152mm to 171mm, the designtension is reduced while the minimum breaking load is increased.

Potential Explosion Risk Comparison between SMR and DMR Liquefaction Processes at Conceptual Design Stage of FLNG (FLNG개념설계 단계에서 SMR 및 DMR 액화공정의 잠재적 폭발위험도 비교)

  • You, Wonwo;Chae, Minho;Park, Jaeuk;Lim, Youngsub
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.95-105
    • /
    • 2018
  • An FLNG (floating liquefied natural gas) or LNG FPSO (floating production, storage and offloading) unit is a notable offshore unit with the increasing demand for LNG. The liquefaction process on an FLNG unit is the most important process because it determines the economic feasibility, but would be a hazard source because of the large quantity of hydrocarbons. While a high efficiency process such as C3MR has been preferred for onshore liquefaction processes, a relatively simple process such as the SMR (single mixed refrigerant) or DMR (dual mixed refrigerant) liquefaction process has been selected for offshore units because they require a more compact size, lighter weight, and higher safety due to their space limitation for facilities and long distance from shore. It is known that an SMR has the advantages of a simple configuration, small footprint, and lower risk. However, with an increased production rate, the inherent safety of SMR needs to be evaluated because of its small train capacity. In this study, the potential explosion risks of the SMR and DMR liquefaction processes were evaluated at the conceptual design stage. The results showed that an SMR has a lower overpressure than a DMR at the same frequency, only with a small production capacity of 0.9 MTPA. With increased capacity, the overpressure of the SMR was higher than that of the DMR. The increased number of trains increased the frequency in spite of the small amount of equipment per train. This showed that the inherent risk of an SMR is not always lower than that of a DMR, and an additional risk management strategy is recommended when an SMR is selected as the concept for an FLNG liquefaction process compared to the DMR liquefaction process.

부유식 천연액화가스(LNG) 터미널의 설계 기술 개발

  • Han Yong-Seop;Lee Jeong-Han;Kim Yong-Su
    • THE INDUSTRY AND TECHNOLOGY OF GAS
    • /
    • v.5 no.1 s.6
    • /
    • pp.39-47
    • /
    • 2002
  • With the expansion of natural gas demands in many countries, the necessity of LNG receiving terminals has been increased. The offshore LNG Floating Storage and Regasification Unit (FSRU) attracts attentions not only for a land based LNG receiving terminal alternative, but also for a feasible and economic solution. Nowadays, as the reliability of offshore oil and gas floating facilities and LNG carriers gains with proven worldwide operations, the FSRU can achieve a safety level that can be comparable to an onshore terminal. The design development related with safety features of the FSRU has been extensively carried out by oil and gas companies, shipyards, engineering companies, and equipment vendors, and has been successful so far in many fields. The construction of the FSRU can be achieved by integrating various technologies and experiences from many disciplines and many participating companies and vendors. In this paper, reviews on some of the important design features and design improvements on FSRU together with the practical construction aspects in cargo containment, vaporization system, ESD system, and operation modes, have been covered in comparison with actual LNG carrier, onshore receiving terminal, and FPSO systems. In order to materialize an FSRU project, the technical and economic justification has to be preceded. It is believed that once the safety and technical soundness is convinced, the FSRU can bring a higher project feasibility by reducing the overall construction time and cost. Through this study, an FSRU design readily applicable to an actual project has been developed by incorporating experiences gained from many marine and offshore projects. The wide use of proven standard technologies adopted in the series construction of LNG carriers and offshore FPSOs will bring the project efficiency and reliability.

  • PDF