• 제목/요약/키워드: 부실 예측

검색결과 101건 처리시간 0.025초

기업부실예측과 금융기관 주가 반응

  • 이명철;강종만;김영갑
    • 재무관리연구
    • /
    • 제15권1호
    • /
    • pp.223-243
    • /
    • 1998
  • 본 연구는 부실기업의 예측여부에 따른 금융기관의 주가 반응을 분석하였다. 1991년부터 1996년까지 관리종목에 편입된 종목중 40종목을 연구대상으로 선정하였다. 부실기업의 예측은 부실예측모형과 전문신용평가기관의 신용등급을 이용하여 판단하였다. 연구결과에 따르면 기업부실 공시시 금융기관 주식의 초과수익률은 전반적으로 부의 값을 갖는 것으로 분석되었다. 즉, 주가반응의 크기에는 정도의 차이는 있지만 부실예측 여부에 관계없이 기업부실은 금융기관 주가에 악영향을 미치는 것으로 나타났다. 구체적으로 살펴보면 신용등급에 의해 부실이 예측되는 경우에 비해 부실이 예측되지 못한 경우에 주가반응이 크고 유의적으로 나타났다. 그러나 부실예측모형을 이용한 경우에는 부실이 예측된 경우의 주가반응이 예측되지 못한 경우에 비해 크게 나타났다. 이러한 결과는 부실예측모형의 부정확성 또는 예측모형에서 사용된 회계자료의 부정확성에 기인한 것으로 판단된다.

  • PDF

부실기업표본을 이용한 이익조절행위와 부실예측에 관한 실증적 연구

  • 한길석;이치훈
    • 재무관리논총
    • /
    • 제6권1호
    • /
    • pp.141-170
    • /
    • 2000
  • 기업의 부실화과정에서 경영자는 그 누구보다도 먼저 부실화의 재무적 징후를 포착할 수 있을 것이며, 부정적인 정보가 외부에 누출되는 경우 발생할 수 있는 은행의 대출중단 등의 치명적 비용을 피하기 위하여 긍정적인 정보를 조작 유포시킬 강한 유인이 존재한다. 이러한 인식에 근거하여 경영자의 이익조절 가능성이 높아지는 기업부실화의 일정시점에서 기업부실예측의 현실적인 모형을 추정하는 데 본 연구의 목적이 있다. 본 연구에서는 부실기업에서 재무정보의 이익조절행위 가능성을 검증하기 위하여 1995년에서 1998년까지 부실화된 115개 상장기업들의 부실전 재무정보를 분석하였고, 총 20개의 재무변수와 그 변화율을 고려하여 부실예측모형을 추정하였다. 이러한 본 연구의 결과는 다음과 같이 요약할 수 있다. 첫째, 부실표본기업의 경우에 재무정보 상호간의 논리성이 와해되거나 크게 약화되어 경영자의 심각한 이익조절행위가 있는 것으로 추정되며, 수익성 정보에 집중되어 부실 2년전부터 심해지고 있는 것으로 나타났다. 둘째, 경영자의 이익조절행위로 인해 논리적 상관관계가 와해되지 않은 재무정보들은 부실예측에 대한 설명력을 갖고 있으며, 본 연구에서 9개의 재무변수로 추정한 부실예측모형은 부실 1년전 80%의 우수한 예측력을 보여주고 있다.

  • PDF

비금융 상장기업의 부실예측모형

  • 장휘용
    • 재무관리연구
    • /
    • 제15권1호
    • /
    • pp.299-327
    • /
    • 1998
  • 기업부실예측모형은 관련당사자들에게 부실위험을 사전에 경고함으로써 기업이 실제 부실화되는 경우 발생할 막대한 사회적 비용을 절감시켜 줄 수 있지만 지금까지 개발된 모형의 예측력은 그다지 만족스럽지 못하였다. 본 연구에서는 먼저 기존 부실예측연구의 한계 및 문제점들을 살펴보고, 철저한 실증분석에 근거하여 모형의 예측력 극대화에 실제적으로 기여하는 변수만을 선정함으로써 보다 높은 예측력을 가진 부실예측모형 개발을 시도하였다. 비금융 상장회사에 적용할 목적으로 개발된 본 모형의 자체예측력은 부실기업표본의 경우 85.3%, 비부실표본의 경우 95.1%으로써 기존의 모형들에 비하여 크게 향상되었고, 검정용표본을 이용한 예측력의 경우에도 부실표본 76.5%, 비부실표본 94.2%로서 대폭 개선되었다. 본 모형은 대출심사시 뿐만 아니라 기관투자가들이 주식 및 채권투자를 위한 기업분석에도 매우 유용하게 활용될 수 있고 특히 적격업체의 1차적 판별에 매우 유용할 것으로 예상된다.

  • PDF

다중 부실예측모형을 이용한 통합 신용등급화 방법 (Using Business Failure Probability Map (BFPM) for Corporate Credit Rating)

  • 신택수;홍태호
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.835-842
    • /
    • 2003
  • 현행 기업신용평가모형에 관한 연구는 크게 부실예측모형 및 채권등급 평가모형으로 구분된다. 이러한 신응평가모형에 관한 연구는 단순히 부실여부 또는 이미 전문가 집단에 의해 사전에 정의된 등급체계만을 예측하는 데 초점을 맞추고 있었다. 그러나. 대부분의 금융기관에서 사용하는 신응평가모형은 기업의 부실여부만을 예측하거나 기존의 채권등급을 예측하기 위만 목적보다는 기업의 고유 신응위험을 평가하여 이에 적합한 신용등급을 부여함으로써, 효율적인 대출업무를 수행하기 위해 활용되고 있다. 본 연구에서는 기존의 부실예측모형들을 대상으로 다중 부실확률모형 (Business Failure Probability Map; BFPM) 접근방법을 이용한 신응등급화 방법을 제안하고자 한다. 본 연구에서 제시된 다중 부실확률모형은 신경망모형과 로짓모형을 통합하여 부도율, 점유율을 고려한 다단계 신용등급을 예측할 수 있게 해준다. 다중 부도확률지도 접근방법을 이용하여 각 금융기관에서 정의하는 수준의 신용리스크를 효과적으로 추정하고, 이를 기준으로 보다 객관적인 다단계 신용등급을 산출하는 새로운 신응등급화 방법을 제시 하고자 한다.

  • PDF

재무정책과 기업부실예측

  • 박정윤
    • 재무관리논총
    • /
    • 제6권1호
    • /
    • pp.93-117
    • /
    • 2000
  • 본 논문의 목적은 1991년부터 1996년까지 부실이 된 상장기업 41개사와 이에 대응하는 118개 건전기업의 표본을 가지고 주요 재무정책변수를 이용하여 로짓분석에 의한 기업부실예측모형을 구축하는데 있다. 본 연구에서는 기존연구와는 달리 이론적으로 타당하고 재무경영자의 관심대상인 투자정책변수, 자본조달정책변수 및 배당정책변수를 가장 잘 반영한다고 판단되는 12개의 재무비율을 사전적으로 선정하였다. 이들 12개의 재무비율에 대해 부실기업과 건전기업을 가장 잘 판별할 수 있는 재무비율을 선정하기 위하여 프로파일 분석과 두 표본 t검정을 하였다. 그 결과 투자정책, 자본조달정책, 그리고 배당정책을 대표하는 변수로 자기자본순이익률, 총자본부채비율 및 배당율이 각각 채택되었다. 그리고 현금흐름변수를 추가하였다. 이 네 변수를 이용하여 로짓분석을 실행하였다. 먼저 부실 1년전부터 부실 5년전까지 각 연도별로 부실예측모형을 추정하였다. 부실 1년전의 추정모형에 의하면 총자본부채비율을 제외한 모든 계수의 부호는 (-)로 모두 기대했던 대로 나타났다. 전체적으로 볼 때 부실 4-5년 전에는 자기자본순이익률과 총자본부채비율이 기업부실에 유의한 영향을 주나 부실전 3년간은 현금흐름과 배당률의 크기가 부실에 영향을 주는 것으로 나타났다. 본 연구는 부실예측모형을 기업의 재무정책적인 관점에서 추정하였다는 데 그 의의가 있다고 할 수 있다.

  • PDF

기계학습을 이용한 저축은행 부실 예측모형 검증 (Verification of insolvency prediction model for savings banks using machine learning)

  • 이경수;임희석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.354-357
    • /
    • 2018
  • 본 연구의 목적은 저축은행 부실에 영향을 미치는 주요 변수를 선정하고, 기존 전통적인 통계기법에 국한된 국내 부실 예측 연구를 벗어나 기계학습을 활용하여 부설 예측모형에 대한 성능을 향상시키는 것이다. 이를 위해 본 연구는 2010년부터 2014년까지의 부실저축은행 297개사와 건전 저축은행 88 개사의 재무정보 1,5067개 분기자료를 기반으로 로지스틱회귀분석 뿐만 아니라, ANN, SVM 및 Decision Tree와 같은 알고리즘을 이용하여 보다 정교한 부실 예측 모형을 개발하고 활용함으로써 금융기관에 대한 리스크 상시 감시를 통해 부실을 사전에 예방하고 시장의 안정화 및 금융질서를 유지함을 목적으로 하고 있다.

로지스틱회귀분석을 이용한 코스닥기업의 부실예측모형 연구 (Failing Prediction Models of KOSDADQ Firms by using of Logistic Regression)

  • 박희정;강호정
    • 한국콘텐츠학회논문지
    • /
    • 제9권3호
    • /
    • pp.305-311
    • /
    • 2009
  • 기업부실 및 그에 따른 도산은 직접적으로는 주주, 종업원, 채권자 등에게 막대한 피해를 주고, 더 나아가 금융기관의 부실화를 초래하는 등 파급효과가 매우 크다. 코스닥 시장에 상장된 기업들은 기술력은 높으나 사업화 가능성이 낮고 자본력이 취약하여 부실화 가능성이 높다. 이에 본 연구는 코스닥기업들 가운데 건전기업과 부실기업을 표본으로 삼아 로지스틱 회귀분석을 이용하여 부실예측모형을 개발하고 검증하였다. 본 연구결과는 첫째, 연도별 모형의 분류정확도는 $76.5%{\sim}77.5%$로 나타났으며. 평균모형의 분류정확도는 $70.6%{\sim}83.4%$로 나타났다. 이들 모형 중 분류정확도가 가장 높은 모형은 부실 3년, 2년, 1년전 평균모형으로 83.4%이다. 둘째, 분류정확도가 가장 높은(부실 3년, 2년, 1년 전) 모형을 선정하여 확인 표본을 대상으로 검증한 결과 예측정확도가 부실 3년 전 71.7%, 부실 2년 전 75.0%, 부실 1년 전 90.0%로 부실 3년 전에서 부실 1년 전으로 갈수록 높은 예측력을 보이고 있다. 특히 부실 1년 전의 경우 90.0%의 높은 예측정확도를 나타내 개발한 모형이 우수한 것으로 판단된다.

정책자금지원 부실예측 모형 연구 (Study on Default Prediction Model of Policy Fund)

  • 임상섭
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.713-714
    • /
    • 2021
  • 소상공인은 우리나라 경제의 중요한 역할을 하는 경제적 근간이루고 있지만 상대적으로 영세하고 경영여건이 불안하다. 정부정책적인 자금지원이 필요하나 재원의 한계로 효율적인 자본분배가 필요하다. 따라서 본 논문은 랜덤포레스트 모형을 활용하여 소상공인 정책자금 대출에 관한 부실예측모형을 개발함으로써 부실징후를 사전에 파악하고 예방함으로써 사회적비용을 절감하고 자원의 효율적 분배에 기여하고자 한다.

  • PDF

데이터마이닝 기법을 이용한 기업부실화 예측 모델 개발과 예측 성능 향상에 관한 연구 (Development of Prediction Model of Financial Distress and Improvement of Prediction Performance Using Data Mining Techniques)

  • 김량형;유동희;김건우
    • 경영정보학연구
    • /
    • 제18권2호
    • /
    • pp.173-198
    • /
    • 2016
  • 본 연구의 목적은 비즈니스 인텔리전스 연구 관점에서 기업부실화 예측 성능을 향상키시는 것이다. 이를 위해 본 연구는 기존 연구들에서 미흡하게 다루어졌던 1) 데이터셋을 구성하는 과정에서 발생하는 바이어스 문제, 2) 거시경제위험 요소의 미반영 문제, 3) 데이터 불균형 문제, 4) 서술적 바이어스 문제를 다루어 경기순환국면을 반영한 기업부실화 예측 프레임워크를 제안하고, 이를 바탕으로 기업부실화 예측 모델을 개발하였다. 본 연구에서는 경기순환국면별로 각각의 데이터셋을 구성하고, 각 데이터셋에서 의사결정나무, 인공신경망 등 단일 분류기부터 앙상블 기법까지 다양한 데이터마이닝 알고리즘을 적용하여 실험하였다. 또한 본 연구는 데이터불균형 문제를 해결하기 위해, 오버샘플링 기법인 SMOTE(synthetic minority over-sampling technique) 기법을 통해 초기 데이터 불균형 상태에서부터 표본비율을 1:1까지 변화시켜 가며, 기업부실화 예측 모델을 개발하는 실험을 하였고, 예측 모델의 변수 선정 시에 선행연구를 바탕으로 재무비율을 추출하고, 여기서 파생된 IT 산출물인 재무상태변동성과 산업수준상태변동성을 예측 모델에 삽입하였다. 마지막으로, 본 연구는 각 순환국면에서 만들어진 기업부실화 예측 모델의 예측 성능 비교와 경기 확장기와 수축기에서의 기업부실화 예측 모델의 유용성에 대해 논의하였다. 본 연구는 비즈니스 인텔리전스 연구 측면에서 기존 연구에서 미흡하게 다루어졌던 4가지 문제점을 검토하고, 이를 해결할 프레임워크를 제안함으로써 기존 연구 대비 기업부실화 예측률을 10% 이상 향상시켰다는 점에서 연구의 의의를 찾을 수 있다.

실제 사례 기반 비정형 데이터를 활용한 기업의 부실징후 예측에 관한 효용성 연구 (Unstructured Data based a Study of Effectiveness about Prediction of Corporate Bankruptcy with a Real Case)

  • 진훈;홍정표;이강호;주동원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.487-492
    • /
    • 2018
  • 4차산업 혁명의 여파로 국내에서는 다양한 분야에 인공지능과 빅데이터 기술을 활용하여 이전에 시행 중인 다양한 서비스 분야에 기술적 접목과 보완을 시도하고 있다. 특히 금융권에서 자금을 빌린 기업들을 대상으로 여신 안정성을 확보하고 선제적인 대응을 위해 온라인 뉴스기사들과 SNS 데이터 등을 이용하여 부실가능성을 예측하고 실제 업무에 도입하려는 시도들이 국내 주요 은행들을 중심으로 활발히 진행 중이다. 우리는 국내의 국책은행에서 수행한 비정형 데이터 기반의 기업의 부실징후 예측 시스템 개발 과정에서 시도된 다양한 분석 방법과 결과 그리고 과정 중에 발생한 문제점들에 관해 기술하고 관련 이슈들에 관하여 다룬다. 결과적으로 본 논문은 레이블이 없는 대량의 기사들에 레이블을 달기 위한 자동 태거(tagger) 개발과 뉴스 기사 예측 결과로부터 부실 가능성을 예측하기 위한 모델 및 성능 면에서 기사 예측 정확도 92%(AUC 0.96) 및 부실 가능성 기업 예측에서도 정형 데이터 분석결과에 견줄만한 성과를 이루었고 이에 관해 보고한다.

  • PDF