• Title/Summary/Keyword: 부식피로균열

Search Result 96, Processing Time 0.025 seconds

Effect of Specimen Thickness to Corrosion Fatigue Crack Propagation Behavior of Structure Rolled Steel (일반구조용 압연강재의 부식피로균열전파거동에 미치는 시험편 두께의 영향)

  • 조약래
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.3
    • /
    • pp.286-294
    • /
    • 1992
  • In this paper, the corrosion fatigue crack propagation behavior of structure rolled steel (SWS 41C) was investigated by changing the thickness, and this experiment was done by the three point bending corrosion fatigue tester. The main results obtained are as follows: 1) As the thickness of specimen becomes thicker, the corrosion sensitivity to initial stage crack becomes some sensitive, and that the fatigue life becomes more sensitive. 2) The crack growth rate to initial stage crack (da/dN) was retarded as the thickness of specimen becomes thicker. But after initial stage crack, as the thickness of specimen is more thicker, da/dN is more rapid. 3) As the corrosion fatigue crack length grows, the accelerative factor of thick specimen (t=12mm) is more higher than that of thin specimen (t=6mm). 4) As the corrosion fatigue crack length grows, the corroson potential of both thick specimen and thin specimen becomes more less noble potential, however thick specimen (t=12mm) tends to more less noble potential than that of thin specimen(t=6mm).

  • PDF

용접잔류 응력과 용접변형의 발생機構와 그 대책

  • 김영식
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.17-27
    • /
    • 1989
  • 용접에 이와 같이 발생하는 용접잔류응력과 변형은 용접구조물의 제작시 여러 가지 장해를 유발 할 뿐만 아니고 그 구조물의 사용중에 있어서도 파괴의 발생 또는 파괴의 전파에 직.간접적으로 기여하여 악영향을 끼치게 된다. 용접잔류응력은 용접구조물의 피로감도를 저하시키거나, 취성균 열 및 응력부식균열의 진전을 용이하게 하며 용접변형은 구조물의 외관을 해치거나 국부적으로 스트레인집중을 초래하여 이 역시 취성파괴의 원인으로 작용하여 구조물의 파괴사고를 유발할 위험성을 내포하고 있다. 따라서 용접변형과 잔류응력을 극도화하기 위한 대책은 용접기술자로 서 용접시공시 유의해야 할 가장 큰 사항의 하나라고 할 수 있다. 보고에서는 이러한 용접변형 과 잔류응력현상에 대해 그 발생기구를 금속학적 측면에서 고찰하고 그 경감대책에 대해서는 구 조물의 형상이나 종류에 따라 각각별개의 대책이 수립되어야 하나 여기서는 보편적인 경우에 한 해 해설하고저 한다.

  • PDF

The Effect of Compressive Residual Stress according to Corrosion Fatigue Life of Automobile Suspension Material (자동차 현가장치재의 부식피로수명에 따른 압축잔류응력의 영향)

  • Ki, Woo-Tae;Park, Sung-Mo;Moon, Kwang-Seok;Park, Kyeong-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • A study of new materials that are light-weight, high in strength has become vital to the machinery of auto industries. But then, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And Influence of corrosive condition for corrosion fatigue crack was investigated, after immersing in 3.5%NaCl, $10%HNO_3$+3.5%HF, $6%FeCl_3$. The immersion period was performed for 365days. The compressive residual stress was imposed on the surface according to each shot velocity based on shot peening, which is the method of improving fatigue life and strength. Fatigue life shows more improvement in the shot peened material than in the un peened material in corrosion conditions. The threshold stress intensity factor range was decreased in corrosion environments over ambient. Compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation. The fatigue crack growth rate of the Shot-peened material was lower than that of the un peened material. Also m, fatigue crack growth exponent and number of cycle of the shot peened material was higher than that of the un peened material. That is concluded from effect of da/dN.

The effects of 3.5% NaCl solution on the corrosion fatigue crack propagation characteristics of SS41 steel (SS41강의 부식피로 균열 전파특성에 미치는 3.5% NaCl수용액의 영향)

  • 오세욱;김재철;최영수
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.111-119
    • /
    • 1987
  • The corrosion fatigue crack propagation characteristics of SS41 steel in 3.5% NaCl solution have been evaluated for loading frequencies of 1Hz and 0.2Hz. A sine wave loading profile was used for fatigue testing. Each test was carried out at a constant stress ratio, R(0.1). The main results are summarized as follows; 1. Fatigue crack propagation rate was higher in 3.5% NaCl solution than in air, higher in the base metal than in the weld metal, and higher at f =0.2Hz than at f =1Hz. 2. The crack closure level of the base metal was not influenced by cyclic frequencies, but that of the weld metal was much influenced. 3. When the crack closure effect was eliminated in the evaluation of crack propagation characteristics by using $\Delta K_{eff}$, the envirommental influence was distinctly observed. At the base metal, crack propagation rate was enhanced by the hydrogen embrittlement, and the weld metal was reduced by the crac closure. 4. There was clearly observed hydrogen embrittlement and severely corroded aspect at fracture surface of lower frequency than that of higher frequency, and at that of base metal than that of the weld metal.

  • PDF

Effect of Inspection on Failure Probability of Pipes in Nuclear Power Plants (원전 배관의 파손확률에 대한 검사의 영향)

  • Park, Jai-Hak;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1249-1254
    • /
    • 2012
  • Pipe inspections conducted in nuclear power plants play an important role in ensuring the structural integrity of pipes. Because considerable manpower and expense is required for pipe inspections, it is very important to determine the optimum inspection period and the level of inspection. In this study, the effects of the period and the inspection quality on the failure probability of pipes are investigated using the P-PIE program, which has been developed to calculate the failure probability of pipes. The pipe data of an internal nuclear power plant is used in the study, and fatigue and stress corrosion crack growth are considered in the analysis.

Fatigue crack growth behaviors of SA508 Gr.3 Cl.2 base and weld material in 290℃ water environment (SA508 Gr.3 Cl.2 저합금강과 용접부의 290℃ 수화학 환경에서 피로균열거동 분석)

  • Cho, Pyungyeon;Kim, Jeong Hyeon;Jang, Changheui;Cho, Hyunchul
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.120-128
    • /
    • 2012
  • The fatigue crack growth behaviors of SA508 Gr.3 Cl.2 low alloy steel in high temperature water environment were investigated. Overall, weld metal showed similar crack growth rate as that of base metal. At 0.01 Hz, fatigue crack growth rate (FCGR) was higher than that in air while the difference was smaller at 0.1 Hz. Also, FCGR showed ${\Delta}K$ dependency at 0.1 Hz only, indicating that the environmental effect was much greater at slower loading frequency of 0.01 Hz. FCGR of SA508 Gr.3 Cl.2 low alloy steel was compatible to or smaller than the ASME Sec. XI fatigue reference curves in high temperature water environment.

海水環境에서 鋼 熔接部의 環境强度評價에 關한 硏究 II

  • 나의균;임재규;조규종;정세희
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 1989
  • The purpose of this study is to investigate the corrosion fatigue crack growth of PWTHT specimens(SS41, SM53B) which are the compact tension ones extracted from the muti-passed weldment and weld block. The corrosion fatigue test was done at the cyclic stress frequency of 3Hz in 3.5% NaCl solution. The results are as follows. 1. Corrosion fatigue crack growth of as-weld was slower than that of base metal. 2. In the low .DELTA.K region, the effect of corrosion environment on crack growth was obvious. However, the corrosion effect decreased with the .DELTA.K slowly. 3. The behaviour of fatigue and corrosion fatigue crack growth depended on the material, heat treatment as well as experimental conditions. 4. Corrosion fatigue crack growth of PWHT specimens(SS41, SM53B) subjected to 1/4hr, was increased compared with that of as-weld. 5. There was a tendency that the exponent value(m) obtained in 3.5% NaCl solution was decreased in comparison with that in air, and the material constant(C)was increased for Paris equation, da/dN=C((.DELTA.K))$^{m}$ , compared with that in air considerably.

  • PDF

A Study on the Corrosion Fatigue Crack Behavior of SPV 50 for Gas Storage Tanks in Marine Environment (해양환경 중에서 가스저장탱크용 SPV 50강재의 부식피로균열(腐蝕疲勞龜裂) 거동(擧動)에 관한 연구(硏究))

  • Lim, Uh-Joh;Shin, Jong-Dae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.198-208
    • /
    • 1997
  • Recently, with rapid increase of gas demand, there occurs much interest their security of safety in the gas storage tanks and pressure vessels etc. In order to solve the problems, the occurrence of corrosion fatigue crack and the propagation behavior must be investigated. Especially the occurrence of corrosion fatigue crack and the propagation behavior in the part which has concentrated stress or defects, must be studied more carefully. In this paper, the high-tensile steel of SPV 50 which is much used for building the LPG storage tanks was tested by the use of a plane bending corrosion fatigue tester under the various marine environment and in the air. These experiments were carried out to investigate the surface crack propagation behavior, the value of experimental constant for Paris' rule(da/dN=$C(K)^m$), the crack depth propagation rate and the accelerative factor of the surface crack propagation rate. The main results obtained are as follows ; 1) As the specific resistances of marine environment decreases, the exponential value of slope m of Paris' rule(da/dN=$C(K)^m$) decreases and the value of intercept C increases. 2) The surface crack propagation rate and the crack depth propagation rate are delayed, as the specific resistances of marine environment is increased. 3) The accelerative factor of the surface crack propagation rate by corrosion fatigue is higher, according as the stress intensity factor range ${\Delta}K_A$ is small.

  • PDF

A Study on the Application of Non-destructive (Ultrasonic) Inspection Technique to Detect Defects of Anchor Bolts for Road Facilities (도로시설물 적용 앵커볼트 결함 검출을 위한 비파괴(Ultrasonic) 검사 기법 적용에 대한 연구)

  • Dong-Woo Seo;Jaehwan Kim;Jin-Hyuk Lee;Han-Min Cho;Sangki Park;Min-Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • The general non-destructive inspection method for anchor bolts in Korea applies visual inspection and hammering inspection, but it is difficult to check corrosion or fatigue cracks of anchor bolts in the part included in the foundation or in the part where the nut and base plate are installed. In reality, objective investigation is difficult because inspection is affected by the surrounding environment and individual differences, so it is necessary to develop non-destructive inspection technology that can quantitatively estimate these defects. Inspection of the anchor bolts of domestic road facilities is carried out by visual inspection, and since the importance of anchor bolts such as bridge bearings and fall prevention facilities is high, the life span of bridges is extended through preventive maintenance by developing non-destructive testing technology along with existing inspection methods. Through the development of this technology, non-destructive testing of anchor bolts is performed and as a technology capable of preemptive/active maintenance of anchor bolts for road facilities, practical use is urgently needed. In this paper, the possibility of detecting defects in anchor bolts such as corrosion and cracks and reliability were experimentally verified by applying the ultrasonic test among non-destructive inspection techniques. When the technology development is completed, it is expected that it will be possible to realize preemptive/active maintenance of anchor bolts by securing source technology for improving inspection reliability.

Residual Stress Measurement of Flat Welded Specimen by Electronic Speckle Pattern Interferometry (전자처리스페클패턴 간섭법을 이용한 평판 용접시험편의 잔류응력 측정)

  • Chang, Ho-Seob;Kim, Dong-Soo;Jung, Hyun-Chul;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • The size and distribution of welding residual stress and welding deformation in welding structures have an effect on various sorts of damage like brittle failure, fatigue failure and stress corrosion cracking. So, research for this problem is necessary continuously. In this study, non-destructive technique using laser electronic speckle pattern interferometry, plate of welding specimen according to the external load on the entire behavior of residual stress are presented measurement techniques. Once, welding specimen force tensile loading, using electronic speckle pattern interferometry is measured. welding specimen of base metal and weld zone measure strain from measured result, this using measure elastic modulus. In this study, electronic speckle pattern interferometry use weld zone and base metal parts of the strain differences using were presented in residual stress calculated value, This residual stress value were calculated by numerical calculation. Consequently, weld zone of modulus high approximately 3.7 fold beside base metal and this measured approximately 8.46 MPa.