• Title/Summary/Keyword: 부식산

Search Result 238, Processing Time 0.035 seconds

A Study on the Characteristics of Humic Materials Extracted from Decomposing Plant Residues -V. Amino Acids in the Hydrolysates of Humic Acids Extracted from Wild Grass Hay and Forest Litters (식물성(植物性) 유기물질(有機物質)의 부숙과정중(腐熟過程中) 부후물질(腐朽物質) 특성(特性)에 관한 연구(硏究) -V. 산야초(山野草)와 수목엽부식산(樹木葉腐植酸)의 산가수분해용액중(酸加水分解溶液中) Amino 산(酸)의 함량(含量))

  • Kim, Jeong-Je;Lee, Wi-Young;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.1
    • /
    • pp.31-38
    • /
    • 1989
  • A series of experiments was conducted to determine the contents and distribution of amino acids in the hydrolysates of humic acids extracted from 3 plant materials. Wild grass hay, and leaves of forest trees were used in this study. Seventeen amino acids were analyzed and their amounts determined. Results obtained from the experiments are summarized in the following: 1. Contents and distribution of hydrolyzable amino acids in the humic acid fractions depend on the kind of plant materials and the allowed time for humification. 2. Neutral amino acids was the largest part of the total amino acids, followed by acidic amino acids, and basic amino acids. 3. The total amounts of amino acids in the hydrolyzable humic acid fractions of well humified residues were in the following order: wild grass hay > leaves of deciduous trees > leaves of coniferous trees 4. In general the relative amounts of lysine increased with humification progressing. S. Glycine and glutamic acid were the two major amino acids in common for the hydrolysate of humic acids extracted from well decomposed residues of plant materials. Alanine, glutamic acid, glycine, aspartic acid and leucine were the five major amino acid in common in raw materials without exception. 6. Arginine appeared to be absent in any of the hydrolysates of humic acids from well humified plant materials. 7. Phenylalanine and tyrosine were present in all hydrolysates and their relative contents increased with the humification of plant materials.

  • PDF

Degradation of Humic Acid and Formation of Formaldehyde in PEROXONE Processes (PEROXONE(Ozone/Hydrogen Peroxide)공정에서의 부식산 분해 및 포름알데히드의 생성)

  • Kim, Kei Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2001
  • This research was studied the action of the coupling ozone-hydrogen peroxide on aqueous humic acid. PEROXONE process is enhanced the generation of hydroxyl radicals which is effective for degradation of organic matters. Therefore the changes of $UV_{254}$ and TOC were investigated through the change of concentrations, injection time of $H_2O_2$, initial pH of aqueous humic acid and concentrations of radical savenger as $HCO_3{^-}$ in the PEROXONE processes. And the GC/ECD was used to detect the formaldehyde formed by ozonation of humic acid. From the experimental results, concentrations and injection time of $H_2O_2$ and initial pH in solution in the PEROXONE processes were very important for enhancing the efficiency of degradation in humic acid. The results indicated that removal efficiency of TOC was the highest when concentration of $H_2O_2$ was 5mg/L, injection time of $H_2O_2$ was 5 minutes and initial pH in solution was 10.5. And presence of alkalinity in solution was reduced the efficiency of treatment. The formaldehyde were formed less PEROXONE processes than only ozone. When initial pH in solution were changed from 3.5 to 10.5, the formaldehyde were formed highest concentration at pH 5.

  • PDF

Influence of Humic or Fulvic Acid on Phytotoxicity of Bentazone (Bentazone의 약해(藥害)에 미치는 부식산(腐植酸) 및 훌브산(酸)의 영향(影響))

  • Han, Dae-Sung;Yang, Jae-E;Shin, Yong-Keon
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.2
    • /
    • pp.162-168
    • /
    • 1993
  • This research was conducted to assess the influence of humic or fulvic acid on Bentazone phytotoxicity using a bioassay with hydroponically grown cabbage (Brassica campestris subsp. napus var. pekinensis Makino). Concentrations of Bentazone in the water culture media were ranged from 0 to 32 ${\mu}M $ and those of the organic ligands were 1.0mM as a soluble carbon. Media were prepared in a complete factorial combination with pHs of 4.5, 6.5 and 8.5. The phytotoxicity indices on growth rate and dry weight decrement were employed to evaluate the effects of organic ligands on the Bentazone phytotoxicity. Humic or fulvic acid without Bentazone treatment enhanced the growth of cabbage and this effect was evident at low pH of 4.5. Bentazone led to chlorosis and necrosis on cabbage leaves resulting in the decreases of dry and fresh weights and growth rate. This phytotoxic effect was increased with Bentazone concentration and evident at low pH. At pH 4.5, dry weight was decreased about 63% with 8${\mu}$M of Bentazone treatment. Effective concentration of Bentazone causing 50% decreases in fresh weight as compared to the control was estimated to be 21${\mu}$M. Presence of organic ligand reduced the phytotoxicity of Bentazone to cabbage significantly by increasing yields and growth rates as compared to the treatment of Bentazone alone. At pH 4.5, fulvic acid reduced phytotoxicity of Bentazone upto 46%, and this efficiency of fulvic acid was better than that of humic acid under the same condition.

  • PDF

Application of Liquid Fertilizer Containing Humate Improving Rhizosphere Activation and Favoring Turfgrass Quality (부식산 액상비료 시비에 의한 크리핑 벤트그래스 지하부 생육증가와 품질향상)

  • Kim, Young-Sun;Lee, Tae-Soon;Cho, Sung-Hyun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.62-71
    • /
    • 2018
  • This study was conducted to evaluate the effect of liquid fertilizer containing humate (LFH) on changes of turfgrass quality and growth by investigating visual quality, chlorophyll content, dry weight of clipping, and nutrient content in leaves tissue. Treatments were designed as follows; control fertilizer (CF), HF-1 ($CF+1.0mL\;m^{-2}\;LFH$), HF-2 ($CF+2.0mL\;m^{-2}\;LFH$), and HF-3 ($CF+4.0mL\;m^{-2}\;LFH$). As compared with CF, soil chemical properties of LFH treatments were not significantly. Visual quality and root dry weight of LFH treatments were higher than that of CF. Chlorophyll content, clipping yield and nitrogen uptake of HF-2 and HF-3 were increased 11.2-11.8%, 15.3-30.0%, 22-42% by application of LFH. The LFH level was positively correlated with visual quality, chlorophyll content, clipping yield or nutrient uptake amount. These results indicated that the application of LFH improved the growth and quality of creeping bentgrass by increasing nutrient uptake and by prompting root growth.

Enhanced Phosphorous Uptake and Growth Improvement of Creeping Bentgrass after Application of Liquid Fertilizer Containing Humic acid and Saccharomyces cerevisiae Broth (부식산 및 효모균 배양액 함유 액상비료 처리에 따른 크리핑 벤트그래스의 인 흡수 및 생육 증대 효과)

  • Lee, Ka Youn;Kim, Young-Sun;Cho, Sung-Hyun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.259-268
    • /
    • 2018
  • This study was conducted to evaluate the effect of liquid fertilizer containing humic acid and Saccharomyces cerevisiae broth (LHS) on changes of turfgrass growth by investigating visual quality, chlorophyll content, dry weight of clipping, and nutrient content in leaf tissues. Treatments were designed as follows; control fertilizer (CF), HS-1 ($CF+1.0mL\;m^{-2}\;LHS$), HS-2 ($CF+2.0mL\;m^{-2}\;LHS$), and HS-3 ($CF+4.0mL\;m^{-2}\;LHS$). After treatment of LHS on creeping bentgrass, soil pH in the treated plots was decreased than that of CF. As compared to CF, visual quality, chlorophyll content and content of N, P and K were not significantly different in the LHS treatments. However, clipping yield and phosphorus uptake of HS-2 were significantly increased by 22% and 33%, respectively. These results showed that application of LHS improved the phosphorus uptake and growth of creeping bentgrass, which would be an alternative management tool for the cool season turfgrass under stress conditions.

Phytosociological Study on Vegetation of Valley in Kyeryongsan national Park (계룡산국립공원 계곡부 식생의 식물사회학적 연구)

  • 송호경
    • Korean Journal of Environment and Ecology
    • /
    • v.14 no.1
    • /
    • pp.88-98
    • /
    • 2000
  • 본 연구는 국립공원의 산림관리에 필요한 기초자료를 제공하고자 계곡부식생을 조사하였다 계룡산국립공원의 계곡부식생을 ZM학과의 식물사회학적인 방법으로 분류한 결과 까치박달군락으로 구분되었다 까치박달군락은 다시 고로쇠나무아군락, 조릿대아군락, 병꽃나무아군락 등 3개의 아군락으로 서어나무군락은 쥐똥나무아군락 쪽동백아군란 등 2개의 아군락으로 구분되었다 까치박달군락은 서어나무군락보다 해발고가 높고 습한 지역에 분포하였다 또한 동일한 계곡이라 할지라도 입지조건 중 특히 계곡부가 위치해 있는 사면의 방위에 따라 식생구성의 차이를 나타냈다.

  • PDF

A Study on the Behaviour of High Temperature Corrosion of Fe-22Cr-5Al-X(X=Zr,Y) (Fe-22Cr-5Al-X(X=Zr,Y)합금의 고온 부식거동에 관한 연구)

  • Lee, Byeong-U;Park, Heung-Il;Kim, Jung-Seon;Lee, Gwang-Hak;Kim, Heung-Sik
    • Korean Journal of Materials Research
    • /
    • v.7 no.10
    • /
    • pp.898-907
    • /
    • 1997
  • Fe-22Cr-5AI-X(X=Zr, Y)합금을 1143K, 고온 황화(P$s_{2}$=1.11x$10^{-7}$atm, P$O_{s}$ =3.11x$10^{-20atm}$) 및 황화/산화 (P$s_{2}$=8.31x$10^{-8}$atm, P$O_{s}$ =3.31x$10^{-18atm}$) 환경의 복합가스 분위기에서 1-30시간동안 노출하여 합금표면에 형성된 부식층을 관찰하여 SEM/EDS로 분석하였다. Fe-22Cr-5AI합금은 고온 부식환경에서 부식 생성물의 성장은 포물선법칙을 따르고 주요 성분은 결함이 많고 다공질인 철과 크롬의 황화물[(Fe, Cr)Sx]이므로 고온 내식성이 감소하였다. Zr을 1wt%첨가한 Fe-22Cr-5AI합금의 고온 부식거동은 Y을 1wt%첨가한 합금과 비슷한 거동을 나타내었다. 황화환경에서는 Cr의 선택 황화에 의한 크롬 황화물(CrS)이 생성되고 노출시간의 경과에 따라 (Fe, Cr)Sx나 (Cr, Fe)Sx 등의 황화물의 성장으로 고온 내식성이 감소하였다. 그러나 황화/산화환경에서는 초기에는 알루미늄산화물(A $I_{2}$ $O_{3}$)및 지르코늄산화물(Zr $O_{2}$)등이 생성되어 보호적이었으나 15시간이후 부터 (Fe, Cr)Sx나 (Cr, Fe)Sx 의 황화물의 성장으로 고온 내식성이 감소하였다.

  • PDF

Proton Affinity Distributions of Humic Acid Extracted from Upland and Paddy Soils (논·밭토양으로부터 추출한 Humic Acid의 수소이온 친화력 분포)

  • Jeong, Chang-Yoon;Park, Chan-Won;Kim, Jeong-Gyu;Lim, Soo-Kil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.429-439
    • /
    • 1999
  • Potentiometric titration data were collected for some humic acids purified from Korean upland and paddy soils over a range of pH (3.0 - 11.0) with $NaNO_3$ background electrolyte concentrations (0.01, 0.10, 0.50 and 1.00 M). The data were applied to model A and V which included both intrinsic heterogeneity of humic materials and electrostatic interaction influences on binding sites. The elemental analysis were conducted for various type of humic samples. The $E_4/E_6$ ratio proposed negative correlation with the total carboxyl groups ($r^2$= 0.9988). The charge ($cmol_c\;kg^{-1}$) on the humic acids became more negative as the ionic strength increased. In both continuous and batch titrations, the ionic strength effect was greater in Namweon series (pH 6.39) than others at pH 5.00. The effect of ionic strength on surface charge appears to be greater in batch titrations. This could suggest that continuous titrations do not represent an equilibrium state and the effects of electrolyte concentration was not fully realized during the course of titrations. Both models described experimental data obtained from continuous and batch titrations well over a range of ionic strengths. Model A is more simpler than model V but adaptes more fitted parameters. Thus, the observed change in apparent binding constants with surface charge is regarded solely due to electrostatic influences rather than functional group heterogeneity. However, Model V is more mechanistically realistic in a number of discrete ligand binding sites.

  • PDF

Effects of Green Manure Crops on Improvement of Chemical and Biological Properties in Soil (토양 화학성 및 생물학성 변화에 대한 녹비작물 시용 효과)

  • Choi, Bong-Su;Jung, Jung-Ah;Oh, Mi-Kyung;Jeon, Sang-Ho;Goh, Hyun-Gwan;Ok, Yong-Sik;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.650-658
    • /
    • 2010
  • We used green manure crops such as hairy vetch, crimson clover, rye, sorghum, and sudan grass by mixing with soils to assess the effects of green manure crops on nutrient supply and soil quality improvement. Temporal changes in soil inorganic nitrogen, carbohydrate, microbial biomass, and humus content were determined as soil quality indicators. Inorganic nitrogen content of the control maintained similar level during the whole period, but it had continually increased until 4 weeks after incorporation (WAI) of green manure crops. Especially, inorganic nitrogen content sharply increased in sudan grass. After incorporation of green manure crops, temporal change of soluble sugar in soils was as follows: it had gradually increased in legume green manure crops-incorporated soils until 7 WAI, which was the highest, and then showed the tendency to be reduced. Meanwhile, it in non-legume green manure crops-incorporated soils rapidly increased after the incorporation, and reached the maximum around 4 WAI. Humic acid by the decomposition of crop residues in green manure crops-incorporated soils was greatly enhanced with the elapsed time of 4 WAI, although it was low at the same level as the control until 2 weeks. In addition, there was a difference in fulvic acid by incorporated crops, fulvic acid in hairy vetch, sorghum and sudan grass showed a similar tendency with the change in humic acid. Our results suggest that soluble sugar, microbial activity and humic acid could be available indicators to evaluate the fertility of green manure crops-incorporated soils.