• Title/Summary/Keyword: 부식률

Search Result 172, Processing Time 0.025 seconds

Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 2nd Report: Corrosion Characteristics (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 -제2보: 부식특성)

  • Ahn, Seok-Hwan;Choi, Moon-Oh;Kim, Sung-Kwang;Son, Chang-Seok;Nam, Ki-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.33-38
    • /
    • 2007
  • The welding methods have been applied in the most structural products from multi-field of automobile, ship construction and construction, and so on. The structure steel must have enough strength of structure. In this study, SS400 steel and STS304 steel were used to estimate the corrosion characteristics of the weld thermal cycle simulated HAZ. To evaluate the corrosion characteristics, also, the materials with two conditions were used in 3.5% NaCl. The one is to the drawing with diameter of ${\Phi}10$ and the other is to the residual stress removal treatment. The electrochemical polarization test and immersion test were carried out. From test results, corrosion potential, corrosion current density, weight loss ratio and corrosion rate were measured. In the kinds of SS400 steels, corrosion potential of weld thermal cycle simulated specimens after the heat treatment showed somewhat the direction of noble potential. And in the base metal to be drawing weight loss ratio and corrosion rate occurred higher than the other kinds. In the kinds of STS304 steels, the result of base metal to be drawing was similar to results of SS400 steels, too. Two kinds of $750^{\circ}C$ and $1300^{\circ}C$ of weld thermal cycle simulation after the heat treatment were rather higher than the other kinds in weight loss ratio and corrosion rate.

Properties Investigation of Corrosion Monitoring for Pure Mg Thin Films under Wet-Dry Cyclic Conditions by Using Electrochemical Impedance Spectroscopy Method (건습환경중 순 Mg박막의 EIS부식 모니터링 특성 관찰)

  • Bae, I.Y.;Lee, K.H.;Kim, K.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.192-193
    • /
    • 2005
  • Magnesium thin films were prepared on cold-rolled steel substrates by RF(Radio Frequency) magnetron sputtering technique.$^{1)}$ The crystal orientation and monitoring of the deposited films were investigated by using XRD(X-ray Diffraction) and EIS(Electrochemical Impedance Spectroscopy), respectively. The corrosion rates of Mg thin films deposited with different argon gas pressure and substrate bias voltage were monitored by AC impedance method under a cyclic wet-dry condition, which was conducted by exposure to alternate conditions of 1h immersion in 3%NaCl solution and 5h drying at 60% RH and 25$^{\circ}C$. The result of corrosion rate of Mg thin films deposited at various Ar gas pressures and substrate bias voltage under wet-dry cyclic exposure in chloride-containing solutions was showed the following conclusions. At the region I during the onset of the wet cycle, corrosion rate showed relatively low value. The increase in the Corrosion rate of region II is due to the increase in the chloride concentration. Corrosion rate of region III during the onset of the cycle zero and salt crystals remain on the metal surface.$^{2)}$

  • PDF

Anti-Corrosion Property of Geopolymer Evaluated by an Impressed Current Cathodic Protection Method, Exposed to Marine Environment (염해환경에서 외부전원법에 의한 지오폴리머 시험체 보강철근의 방식특성 평가)

  • Lee, Hae-Seung;Cho, Ggu-Hwan;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.397-405
    • /
    • 2014
  • There are many literatures reporting that the service life of re-bars in concrete structures is reduced in the oceanic environment due to chloride attack. To solve this problem, this study used geo-polymer as a mix material for concrete to increase its resistance to salt damage, and the external voltage method, one of the electric methods, is was applied to evaluate the likelihood of re-bars in the oceanic structure being exposed to the extreme salt environment. The items evaluated include the natural potential of re-bars and the corrosion rate. The results of the tests showed that in all of the salt environmental conditions (submerged zone, tidal zone, and crack), the tested materials were remarkably effective compared with ordinary concrete. The corrosion protective property was found not only in the evaluation of the natural potential but also in the evaluation of the corrosion rate, suggesting that the external voltage method can be used stably for geo-polymer RC structures in an extreme salt environment.

Measurement of Surface Strain on Soft Biological Tissues Using Irregular Grid Pattern (불규칙적인 격자망을 이용한 생체 연조직의 곡면변형률 측정)

  • Lee, Jun Sik;Kim, Ki Hong;Kim, Hyung Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1051-1057
    • /
    • 2013
  • In this study, an automatic surface-strain measurement system called "ASIAS-bio" has been developed. This system can be used even in cases in which it is very difficult to apply a regular grid pattern necessary for measuring surface-strain, such as curved or uneven surfaces; surfaces damaged by corrosion or contamination; or soft materials such as rubber, foam, and biological tissues. This system works independently of the measurement conditions including the material and its surface condition, grid pattern and size, grid marking method, and degree of deformation. A comparison between the strain distributions of the sheet metal parts measured by using this system and those obtained by a commercial system showed that this system was sufficiently reliable. In addition, the deformation of the swine joint capsule and human knee skin was measured by using this system to demonstrate its usefulness.

Effect of $SiN_x$ passivation film by PECVD on mono crystalline silicon (플라즈마 화학 기상 증착법을 이용하여 단결정 실리콘 상에 증착된 실리콘나이트라이드 패시베이션 박막의 효과)

  • Gong, Dae-Yeong;Ko, Ji-Soo;Jung, Sung-Wook;Choi, Byoung-Deog;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.446-446
    • /
    • 2009
  • 표면 패시베이션 기술로 이용되는 수소화된 실리콘 질화막은 제조원가의 절감을 위한 실리콘 기판재료의 두께 감소에 따른 특성상의 문제점을 해결하기 위해 중요한 영향을 미치는 요소이다. 실리콘 질화막은 강한 기계적 강도, 우수한 유전적 특성, 수문에 의한 부식과 유동적 이온에 대한 우수한 저항력 때문에, 반도체 소자 산업에서 널리 사용되고 있다. 수소화된 실리콘 질화막은 반사방지 특성과 함께 표면 패시베이션의 질을 향상시킬 수 있다. 굴절률 1.9 ~ 2.3 범위에서 쉽게 변화 가능한 수소화된 실리콘 질화막은 굴절률 1.4 ~ 1.5 사이의 열적 산화막 보다 효과적인 반사방지막이다. 수소화된 실리콘 질화막을 사용한 태양전지에서는 효율을 높이기 위해서 기판 표면에서의 케리어 재결합이 억제되어져야한다. 또한, 수소화된 실리콘 질화막은 최적화된 두께와 굴절률을 가져야한다. 본 연구에서는 고효율 태양전지에 적용하기 위해 반송자 수명이 향상된 수소화된 실리콘 질화막을 플라즈마 화학 기상 증착법을 이용하여 증착하였다. 박막은 $250^{\circ}C\;{\sim}\;450^{\circ}C$에서 증착되었으며 증착된 박막은 1.94 to 2.05 굴절률 값을 가지고 있다. 반송자 수명을 증가시키기 위해 $650^{\circ}C\;{\sim}\;950^{\circ}C$에서 어닐링 하였고 반송자 수명을 측정하여 패시베이션 특성을 분석하였다. 수소화된 실리콘 질화막은 $850^{\circ}C$의 어닐링 온도와 굴절률 2.0 조건에서 가장 좋은 반송자 수명을 나타냈다.

  • PDF

An Experimental Study on the Mechanical Properties of Porous Concrete Using Coal Ash and Polymer (석회석 골재를 사용한 강섬유보강 포러스콘크리트의 강도특성에 관한 실험적 연구)

  • Lee, Byung-Jae;Park, Seong-Bum;Jang, Young-Il;Jeon, Heum-Jin;Lee, Taek-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.685-688
    • /
    • 2008
  • Concrete is strong on the compressive property, but weak on the tensile and flexural properties. To improve these problems, the reinforcing bar is used in concrete. But porous concrete with steel fiber has a weak point when exposed to air, because porous concrete has the vast continuous void on its inside and steel fiber is easily rusted by air. For these reasons, this study investigated the void ratio, compressive strength, bending strength and bending toughness as steel fiber mixing ratio and target void ratio. From test results, actual void ratio and strength properties increased as the mixing ratio of steel fiber increase. In case the mixing ratio of steel fiber over the fixed ratio, strength is decreased. And from the toughness evaluation, compared to the porous concrete which isn't mixed with steel fiber, the deflection variation efficiency is remarkably improved. Consequently we can confirm the possibility of porous concrete with steel fiber for the secondary product and pavement material to improve strength and bending resistance efficiency.

  • PDF

Development of Estimated Model for Axial Displacement of Hybrid FRP Rod using Strain (Hybrid FRP Rod의 변형률을 이용한 축방향 변위추정 모형 개발)

  • Kwak, Kae-Hwan;Sung, Bai-Kyung;Jang, Hwa-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.639-645
    • /
    • 2006
  • FRP (Fiber Reinforced Polymer) is an excellent new constructional material in resistibility to corrosion, high intensity, resistibility to fatigue, and plasticity. FBG (Fiber Bragg Grating) sensor is widely used at present as a smart sensor due to lots of advantages such as electric resistance, small-sized material, and high durability. However, with insufficiency of measuring displacement, FBG sensor is used only as a sensor measuring physical properties like strain or temperature. In this study, FRP and FBG sensors are to be hybridized, which could lead to the development of a smart FRP rod. Moreover, developing the estimated model for deflection with neural network method, with the data measured through FBG sensor, could make conquest of a disadvantage of FBG sensor - uniquely used for sensing strain. Artificial neural network is MLP (Multi-layer perceptron), trained within error rate of 0.001. Nonlinear object function and back-propagation algorithm is applied to training and this model is verified with the measured axial displacement through UTM and the estimated numerical values.

Experimental study on pullout performance of structural fiber embedded in cement composites according to fineness modulus of fine aggregate (시멘트 복합체에 근입된 숏크리트용 구조 섬유의 잔골재 조립률에 따른 인발성능 비교)

  • Choi, Chang-Soon;Lee, Sang-Don;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.317-326
    • /
    • 2022
  • This research performed single fiber pull-out test to evaluate the effect between fineness modulus of cement composites and the fiber bond performance (bond strength and pull-out energy). A synthetic fiber (polypropylene) and a steel fiber (hooked ends type) were inserted in the middle of dog bone shape specimens which were designed with fine aggregates of F. M. 1.96, 2.69, 3.43. The experiment results showed bond strength and pullout energy of synthetic fiber are improved as fineness modulus of cement composites increases. It is considered that the frictional resistance between synthetic fiber and cement composite increases as fineness modulus of cement composite increases and consume more energy while pull out the fiber from cement composite. However bond performance of steel fiber which resist pull out by mechanical behavior is less effected on fineness modulus of cement composite. It is considered that the mechanical fixedness of hooked ends exerts a greater effect on the pullout resistance than the frictional resistance between the cement composite and the steel fiber so F. M. of fine aggregate has a relatively small effect on the pullout resistance with the steel fiber.

Strain Distribution Measurement for Wall Thinning Defect in Pipe Bends by ESPI (ESPI 를 이용한 곡관 감육 결함부의 변형률 분포 측정)

  • Naseem, Akhter;Kim, Koung-Suk;Jung, Sung-Wook;Park, Jong-Hyun;Choi, Jung-Suk;Jung, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.120-125
    • /
    • 2007
  • Put Abstract text here The strain distribution measurement for wall thinned pipe bends by ESPI is presented. Defect types observed in the steel piping in the nuclear power plants (NPP) are the crack at the weld part and the wall thinning defect in the pipe bends. Especially, the wall thinning defects in the pipe bends due to the flow-accelerated corrosion (FAC) is a main type of defects observed in the carbon steel piping system. ESPI is one of the optical non-destructive testing methods and can measure the stress and the strain distribution of the object subjected by the tensile loading or the internal pressure. In this paper, the strain distribution of the wall thinned pipe bends due to the internal pressure will be measured by ESPI technique and the results are discussed. From the results, the size of the wall thinning defect can also be measured approximately.

  • PDF

Estimation Method of Local Elastic-Plastic Strain at Thinning Area of Straight Pipe Under Tension Loading (인장하중을 받는 직선 배관 감육부의 국부 탄소성 변형률 평가 방법)

  • An Joong-Hyok;Kim Yun-Jae;Yoon Kee-Bong;Ma Young-Wha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.533-542
    • /
    • 2006
  • In order to assess the integrity of pipes with local thinning area, the plastic strain as well as the elastic strain at the root of thinned region are required particularly when fluctuating load is applied to the pipe. For estimating elastic-plastic strain at local wall thinning area in a straight pipe under tensile load, an estimation model with idealized fully circumferential constant depth wall thinning area is proposed. Based on the compatibility and equilibrium equations a nonlinear estimation equation, from which local elastic-plastic strain can be determined as a function of pipe/defect geometry, material and the applied strain was derived. Estimation results are compared with those from detailed elastic-plastic finite element analysis, which shows good agreements. Noting that practical wall thinning in nuclear piping has not only a circular shape but also a finite circumferential length, the proposed solution for the ideal geometry is extended based on two-dimensional and three-dimensional numerical analysis of pipes with circular wall thinning.