• Title/Summary/Keyword: 부순 잔골재

Search Result 43, Processing Time 0.029 seconds

The Engineering Properties of Concrete Exposed at High Temperature (고온을 받은 콘크리트의 공학적 특성)

  • 권영진;김용로;장재봉;김무한
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.31-36
    • /
    • 2004
  • The purpose of this study is to present data for the reusing, rehabilitation and estimation of safety of RC structure damaged by fire, and for the prevention of explosive spatting by investigation the properties of explosive spalling, compressive strength and ultrasonic pulse velocity according to kinds of fine aggregate, admixture and water-cement ratios. In explosive spalling properties with kinds of aggregate, explosive spalling does not appear or little at surface in the case of used sea sand, but the case of using recycled sand or crushed sand is worse and worse. Property with the kind of admixture does not appear specially. And high strength concrete with W/C 30.5% was taken spalling, but 55% does not appear. It is found that residual compressive strength after exposed at high temperature showed 45% in W/C 55%, and 64% in W/C 30.5% of its original strength averagely. Ultrasonic pulse velocity is different with kinds of aggregate. W/C. and heating time. When 3 month age after heating ultrasonic pulse velocity is recovered abut 1.3%~8.4% of its 1 month age after heating.

Status of Ready-Mixed Concrete Plants and Raw Materials in Pusan (부산지역 레미콘 플랜트 및 원재료 현황)

  • Yoo, Seung-Yeup;Koo, Ja-Sul;Lee, Yang-Soo;Moon, Hyung-Jae;Kim, Jung-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.641-644
    • /
    • 2008
  • This paper investigated the plant and raw material of the ready-mixed concrete company which could supply to the second Lotte World on Pusan. the results were summarized as following. Almost plants were mainly using Twin shaft mixer which was 210m$^3$/hr and horizontal type. There was different the number of admixture silos at each plants, and they were separated by types. The mixtures mainly consisted of the ordinary portland cement, fly ash and blast furnace slag. For favorable quality control, each materials had to carry from same factories, and the monitering standard for quality control should be prepared. The coarse aggregates were used with many different producing districts, so they were only used from Y caused by exclusion of quality difference. The crushed, washed and river sands were generally used as fine aggregates, so the fine aggregates which could be possible to supply stable quality were chosen. This study used Poly Carbonic Acid Admixture which was developed to satisfy maintenance of performance till 2 hours and 10MPa at 15 hours.

  • PDF

Aggregate Utilization Estimation of River Sand according to Typical Location of Main Stream of Nakdong-River (낙동강 본류의 대표위치별 하천모래의 골재 활용성 평가)

  • Park, Jae-Im;Bae, Su-Ho;Kwon, Soon-Oh;Kim, Chang-Duk;Lee, Seung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3719-3725
    • /
    • 2012
  • Due to the recent shortage of well-graded river sand resulting from a rapid growth of concrete construction, sea sand, crushed sand, and etc. are increasingly used instead. It is, however, well noted that non-washed sea sand leads to corrosion of the reinforcing steel in concrete, and thus eventually results in damage to concrete. Also, the crushed sand is not being widely used, since it is difficult to maintain the allowable amount of passing 0.08mm sieve and to adjust grading. On the other hand, because the fine sand of Nakdong-River has a poor grading but good quality as a fine aggregate for concrete, it is strongly needed to investigate the fine sand as an alternative fine aggregate. Thus, the purpose of this research is to evaluate the physical properties of the fine sand of Nakdong-River to utilize it actively as a fine aggregate. For this purpose, after the sand samples were collected according to typical location of main stream of Nakdong-River, the physical properties such as density in oven-dry condition, grading, unit volume mass, and etc. of them were estimated. It was observed from the test results that physical properties of the fine sand of Nakdong-River except grading were found to be excellent.

A Study of Characteristics Change of Low-Shrinkage Normal Strength Concrete According to Mixing Factors and curing Temperature (배합요인과 양생온도에 따른 일반강도 초저수축 콘크리트의 특성 변화 연구)

  • Jeong, Jun-Young;Min, Kyung-Hwan;Lee, Dong-Gyu;Choi, Hong-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.342-347
    • /
    • 2016
  • This study examined the effects of the coarse aggregate maximum size and grading of fine aggregates to acquire the characteristics of very low shrinkage on normal strength concrete mixed in the field. In addition, the shrinkage characteristics of concrete under construction were evaluated in accordance with the curing temperature. The compressive strength and drying shrinkage tests were performed for nine mixing factors composed of the coarse aggregate size (13, 20, and 25 mm), types of fine aggregate (see sand, crushed sand, and blended sand), and curing temperatures (5, 20, and $35^{\circ}C$). To acquire low shrinkage properties under $350{\mu}{\varepsilon}$ strain on normal strength concrete, a 25 mm maximum of coarse aggregate was available, and the grading of fine aggregate affected the shrinkage of concrete. In addition, very low shrinkage properties were acquired in the curing temperature range except cold and hot weather concrete.

Characterization of Mortar with Steel Slag (제강슬래그 사용 모르타르의 특성 검토)

  • Choi, Hoon-Gook;Kim, Sung-Su;Yoo, Jung-Hoon;Kim, Jung-Bin;Jeong, Yong;Park, Min-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.231-232
    • /
    • 2010
  • In this study, we assessed on quality of mortar using the steel slag powder as binder. Then we investigated properties of mortar in the long term using steel slag for fine aggregate. As a result of experiment, quality of the mortar using steel slag powder appeared too low compared with using only OPC and compressive strength of specimen using the steel slag fine aggregate have similar using crush sand.

  • PDF

Effect of Fine Content of the Fine Aggregate is on the Quality of the Cement Mortar (잔골재의 미립분 함유량이 시멘트 모르타르의 품질에 미치는 영향)

  • Kim, Min-Sang;Park, Yong-Jun;Jo, Man-Ki;Kim, Young-Tae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.121-122
    • /
    • 2016
  • Recently in the domestic construction industry, source depletion has resulted in instances of ready-mixed concrete companies using river sand or crushed sand with high fine particle content. But the use of such low-quality fine aggregate is known to cause concrete quality to decline and have negative effects. So this study analyzed how much of an impact changes in fine particle content have on cement mortar's engineering characteristics. As a result, the flow rate and air quantity, which are characteristics of unhardened mortar, were shown to decrease as fine particle content increased, and compression strength, a characteristic of light mortar, was shown to subtly increase as fine particle content decreased.

  • PDF

A Study on the Stabilization Plan of the Fine Aggregate in the Southeastern Area Due to the Reduction of Sea Sand Collection (바다모래 채취량 감소로 인한 동남권 잔골재 수급안정화 방안에 관한 연구)

  • Kang, Suk Pyo;Kang, Hye Ju;Hwang, Byoung Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.326-327
    • /
    • 2018
  • It is expected that the proportion of crushed aggregate will increase in order to fill the decreasing supply of sea sand in the southeast area. However, it is necessary to supply the least amount of sea sand to diversify the aggregate source, in order to minimize the mixing ratio of sea sand and crushed sand to minimize the structural stability of the concrete.

  • PDF

A Study on the Evaluation of the Durability of Concrete Using Copper Slag Aggregates (동슬래그 골재를 함유한 콘크리트의 내구성 평가 연구)

  • Lee, Mun-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.773-784
    • /
    • 2008
  • Even if the exploitation of copper slag produced during the smelting process of copper as aggregate for construction purpose has been permitted since 2004 in Korea, the lack of sufficient data enabling to evaluate its long-term stability that is its durability has to date impeded its application. This study intends to investigate experimentally the durability characteristics of 18 and 27 MPa-class commercial concretes in which natural sand (fine aggregates) has been partially replaced by copper slag through accelerated and exposure tests so as to provide bases promoting the application of copper slag concrete. The experimental results revealed insignificant difference of the durability characteristics in most of the mix proportions in which 30% of natural sand was replaced by copper slag. In the case where crushed sand was adopted, tests verified similar characteristics for replacement ratio of 50%. Particularly, the results of the exposure test conducted during 8 years demonstrated that equivalent level of durability was secured compared to the case using natural sand. In the case of 18MPa-class lower grade concrete, exposure test verified also that the physical lifetime similar to 50 years could be secured until carbonation reaches cover depth of 20 mm.

Characteristics of Thermal Conductivity of Concrete Containing Fine Bottom Ash Aggregates (바텀애시 경량골재를 사용한 콘크리트의 열전도율 특성)

  • Park, Ji-Hun;Jung, Hoe-Won;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.596-603
    • /
    • 2020
  • In this paper, an experimental study was conducted to investigate the applications of bottom ash, which is an industrial by-product obtained from thermal power plants. Bottom ash was used as fine aggregate in this study, and an experiment was conducted to determine the characteristics of the bottom ash aggregate. In addition, 25, 50, 75, and 100% contents of crushed (natural) fine aggregate were replaced with bottom ash aggregate to produce concrete mixture including bottom ash. Thereafter, test results of the unit weight, ultrasonic velocity, compressive strength, and thermal conductivity of bottom ash concrete were obtained. Moreover, the effect of the curing ages of 28 and 91 days on the material characteristics of bottom ash concrete were identified. Test results showed that bottom ash used as fine aggregate had pozzolanic reaction. Finally, based on the extensive experimental results, relationships between thermal conductivity and unit weight, ultrasonic velocity, and compressive strength was suggested.

An Experimental Study on the Properties of Fresh and Hardened Ready Mixed Concrete Using EEZ sand and Crush sand (EEZ모래와 부순모래를 사용한 레미콘의 굳지않은 성상 및 경화성상에 관한 연구)

  • Shin Seung-Bong;Koo Kyung-Mo;Na Chul-Sung;Ryu Jae-Chul;Kim Gyu-Yong;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.53-56
    • /
    • 2006
  • Recently, trouble of sand supplying is occurred according to exhaustion of natural sand resources. Therefore various measures are proposed for solution of trouble of sand supply and crushed sand among measures is used as one of most universal measures. But because crushed sand have poor particle shape and plenty of makes micro particle, the quality of concrete using crushed sand deteriorated. Therefore, this study evaluated engineering property of concrete with replacement ratio of crushed sand and EEZ sand and applied evaluation result to fundamental data for quality control of concrete using crushed sand and EEZ sand. The result of this study have shown that quality of concrete using crushed sand and EEZ sand and The compressive strength of concrete up to 50, 70% EEZ sand replacement by crush sand, nearly equal to that of general sand.

  • PDF