• Title/Summary/Keyword: 부숙도

Search Result 246, Processing Time 0.025 seconds

A study on inspection methods for waste treatment facilities(I): Derivation of impact factor and mass·energy balance in waste treatment facilities (폐기물처리시설의 세부검사방법 마련연구(I): 공정별 주요인자 도출 및 물질·에너지수지 산정)

  • Pul-Eip Lee;Eunhye Kwon;Jun-Ik Son;Jun-Gu Kang;Taewan Jeon;Dong-Jin Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • Despite the continuous installation and regular inspection of waste treatment facilities, complaints about excessive incineration and illegal dumping stench continue to occur at on-site treatment facilities. In addition, field surveys were conducted on the waste treatment facilities currently in operation (6 type) to understand the waste treatment process for each field, to grasp the main operating factors applied to the inspection. In addition, we calculated the material·energy balance for each main process and confirmed the proper operation of the waste disposal facility. As a result of the site survey, in the case of heat treatment facilities such as incineration, cement kilns, and incineration heat recovery facilities, the main factors are maintenance of the temperature of the incinerator required for incineration and treatment of the generated air pollutants, and in the case of landfill facilities Retaining wall stability, closed landfill leachate and emission control emerged as major factors. In the case of sterilization and crushing facilities, the most important factor is whether or not sterilization is possible (apobacterium inspection).In the case of food distribution waste treatment facilities, retention time and odor control during fermentation (digestion, decomposed) are major factors. Calculation results of material balance and energy resin for each waste treatment facility In the case of incineration facilities, it was confirmed that the amount of flooring materials generated is about 14 % and the amount of scattering materials is about 3 % of the amount of waste input, and that the facility is being operated properly. In addition, among foodwaste facilities, in the case of an anaerobic digestion facility, the amount of biogas generated relative to the amount of inflow is about 17 %, and the biogas conversion efficiency is about 81 %, in the case of composting facility, about 11 % composting of the inflow waste was produced, and it was comfirmend that all were properly operated. As a result, in order to improve the inspection method for waste treatment facilities, it is necessary not only to accumulate quantitative standards for detailed inspection methods, but also to collect operational data for one year at the time of regular inspections of each facility, Grasping the flow and judging whether or not the treatment facility is properly operated. It is then determined that the operation and management efficiency of the treatment facility will increase.

Decentralized Composting of Garbage in a Small Composter for Dwelling House I. Laboratory Composting of the Household Garbage in a Small Bin (가정용 소형 퇴비화용기에 의한 부엌쓰레기의 분산식 퇴비화 I. 실험실 조건에서 퇴비화 연구)

  • Seo, Jeoung-Yoon;Joo, Woo-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.321-337
    • /
    • 1994
  • The garbage from the dwelling houses was composted in two kinds of small composter in laboratory to investigate the possibility of garbage composting. They were general small composters. One (type 1) was insullated but the other (type 2) was not. Because it was found that type 2 was not available for composting under our meteorological conditions through winter experiment, only type 1 was tested in spring and summer. The experiment was performed for 8 weeks in each season. The seasonal variation of several compounds in compost was evaluated and discussed. The result summarized belows are those taken at the end of the experiment, if the time was not specified. 1) The maximum temperature was $58^{\circ}C$ in spring, $57^{\circ}C$ in summer and $41^{\circ}C$ in winter. This temperature was enough to destroy the pathogen except for winter. 2) The mass was reduced to average 62.5% and the volume reduction was avergae 74%. 3) The density was estimated as 0.7kg/l in spring, 0.8kg/l in summer and 1.1kg/l in winter. 4) The water content was not much changed for composting periods. It had 75.6% in spring and 76.6% in summer and winter. 5) There was a great seasonal difference in pH value. It was reached to pH 6.13 in spring, pH 8.62 in summer and pH 4.75 in winter. 6) The faster organic matter was decomposed, the greater ash content was increased. Cellulose and lignin content were increased, but hemicellulose content was reduced during composting period. 7) Nitrogen contents were in the range of 3.1-5.6% and especially high in summer. After ammonium nitrogen contents were increased at the early stage of composting period, they were decreased. The maximum ammonium nitrogen content was 3,243mg/kg after 2 weeks in winter, 6,053mg/kg after 3 weeks in spring and 30,828mg/kg after 6 weeks in summer. C/N-ratios were not much changed. Nitrification occurred actively in spring and summer. 8) The contents of volatile and higher fatty acids were increased in early stage of composting and reduced after that. The maximum content of total fatty acid was 10.1% after 2 weeks in winter, 5.8% after 2 weeks in spring and 15.7% after 4 weeks in summer. 9) The contents of inorganic compounds were not accumulated as composting was proceeded. They were in the range of 0.9-4.4% $P_2O_5$, 1.6-2.9% $K_2O$, 2.4-4.6% CaO and 0.30-0.80% MgO. 10) CN and heavy metal contents did not show any tendency. They were in the range of 0.11-28.99mg/kg CN, 24-166mg/kg Zn, 5-129mg/kg Cu, 0.8-14.3mg/kg Cd, 7-42mg/kg Pb, ND-30mg/kg Cr and $ND-132.16\;{\mu}g/kg$ Hg.

  • PDF

Decentralized Composting of Garbage in a Small Composter for Dwelling House;III. Laboratory Composting of the Household Garbase in a Small Bin with Double Layer Walls (가정용 소형 퇴비화용기에 의한 부엌쓰레기의 분산식 퇴비화;III. 실험실조건에서 이중벽 소형 용기에 의한 퇴비화 연구)

  • Seo, Jeoung-Yoon;Joo, Woo-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.232-245
    • /
    • 1995
  • The garbage from the dwelling house was composted in two kinds of small composter in the laboratory, and the possibility of garbage composting was examined. The composters were general small. One (type 3) was constructed with the double layer walls and the other (type 4) was the same as the first except for being insulated. Because it was found that type 3 was not available for composting under our meteorological conditions through the winter experiment, only type 4 was tested in spring and summer. The experiment was performed for 8 weeks in each season. The seasonal variation of several components in the compost was evaluated and discussed. The results summarized below were those obtained at the end of the experiment, if the time was not specified. 1) The maximum temperature was $43^{\circ}C$ in winter, $55^{\circ}C$ in spring and $56^{\circ}C$ in summer. 2) The mass was reduced to an average of 63% and the volume reduction was an average of 78%. 3) The density was estimated as 1.5 kg/l in winter and 0.8 kg/l in spring and summer. 4) The water content was not much changed during the composting periods. It was 79.3% in winter, 75.0% in spring and 70.0% in summer. 5) After pH value increased during the first week, it decreased until the second week and increased again continuously thereafter. It reached pH 6.19 in winter, pH 7.59 in spring and pH 8.69 in summer. 6) The faster the organic matter was decomposed, the greater the ash content increased. The contents of cellulose and lignin increased, but that of hemicellulose decreased during the composting period. 7) Nitrogen contents were in the range of 3.3-6.8% and especially high in summer. After ammonium contents increased at the early stage of the composting period, they decreased. The maximum ammonium-nitrogen content was 2,404mg/kg after 8 weeks in winter, 12,400mg/kg after 3 weeks in spring and 20,718mg/kg after 3 weeks in summer. C/N-ratios decreased with the lapse of composting time, but they were not much changed. Nitrification occurred actively in summer. 8) The contents of volatile and higher fatty acids increased at the early stage of composting and reduced after that. The maximum content of total fatty acid was 9.7% after 6 weeks in winter, 14.8% after 6 weeks in spring and 15.8% after 2 weeks in summer. 9) The contents of inorganic components were not accumulated as composting proceeded. They were in the range of 0.9-4.4% $P_2O_5$, 1.6-2.4% $K_2O$, 2.2-5.4% CaO and 0.30-0.61% MgO. 10) CN and heavy metal contents did not show any tendency. They were in the range of 0.21-14.55mg/kg CN, 11-166mg/kg Zn, 5-65mg/kg Cu, 0.5-10.8mg/kg Cd, 6- 35mg/kg Pb, ND-33 mg/kg Cr and ND-302.04 g/kg Hg.

  • PDF

Development of Root Media Containing Pine Bark for Cultivation of Horticultural Crops (소나무 수피를 포함한 원예작물 재배용 혼합상토의 개발)

  • Park, Eun Young;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.499-506
    • /
    • 2014
  • This research was conducted to develop root media containing ground and aged pine bark (GAPB) and ground and raw pine bark (GRPB). After analysis of physico chemical properties, the pine barks were blended with peat moss (PM) or coir dust (CD) in various ratios to formulate 12 root media. Then, two out of 12 root media were chosen based on the physical properties for further experiments. The pre-planting nutrient charge fertilizers (PNCF) were incorporated into two root media and chemical properties were analysed again. The total porosity (TP), container capacity (CC), and air-filled porosity (AFP) of GAPB were 78.7%. 39.4%, and 38.3%, respectively, while those of GRPB were 74.7%, 41.2%, and 33.4%, respectively. The percentage of easily available water (EAW, from CC to 4.90 kPa tension) and buffering water (BW, 4.91-9.81 kPa tension) in GAPB were 12.7% and 8.5%, respectively, which were a little lower than the 13.5% and 8.8% in GRPB. The pH and EC were not different significantly, but cation exchange capacity was different between the two pine barks (GAPB: pH 5.26, EC $0.61dS{\cdot}m^{-1}$, CEC $15.7meq{\cdot}100g^{-1}$; GRPB: pH 5.19, EC $0.32dS{\cdot}m^{-1}$, CEC $9.32meq{\cdot}100g^{-1}$). The concentrations of exchangeable cations in GAPB were Ca 0.32, K 0.05, Mg 0.27 and $0.12cmol+{\cdot}kg^{-1}$, whereas those in GRPB were Ca 0.28, K 0.08, Mg 0.25 and $0.09cmol+{\cdot}kg^{-1}$. The concentrations of $PO_4$-P, $NH_4$-N and $NO_3$-N were 485.8, 0.62 and $0.91mg{\cdot}L^{-1}$ in GAPB and 578, 1.00 and $0.82mg{\cdot}L^{-1}$ in GRPB, respectively, when those were analyzed in the solution of the saturated paste. The TP, CC and AFP in the two selected media were 89.3 and 76.3, and 13.0% in PM+GAPB (8:2, v/v) and 88.2, 68.2 and 20.0% in CD+GRPB (8:2), respectively. The pHs and ECs were 3.8 and $0.24dS{\cdot}m^{-1}$ in PM+GAPB which were a little lower than 5.8 and $0.65dS{\cdot}m^{-1}$ in CD+GRPB. However, the pHs analysed before and after incorporation of PNCF in the two root media did not show large differences. This is because the solubility of dolomitic lime is very low, and the pH it is expected to rise gradually when crops are cultivated int he root media. The information obtained in this study should facilitate effective formulation of root media containing pine bark.

An Optimum Control Time of Alopecurus aequalis var. amurensis Ohwi in No - tillage Dry Seeded Rice (벼 무경운(無耕耘) 건답직파재배시(乾畓直播栽培時) 둑새풀 방제적기(防除適期) 구명(究明))

  • Hwang, C.D.;Park, S.T.;Kim, S.Y.;Lee, K.Y.;Kim, S.C.
    • Korean Journal of Weed Science
    • /
    • v.17 no.4
    • /
    • pp.362-367
    • /
    • 1997
  • A field experiment was conducted to determine an optimum control time of water foxtail(Alopecurus aequalis var. amurensis Ohwi), a most troublesome weed, in no-tillage dry seeded rice. Paraquat, a non-selective herbicide, was applied at 1.5 days interval from March 15 to May 15 at a concentration of 3,000ml per hectar and its control efficacy to A. aequalis was recorded before and after seed sowing. In addition. other characters such as decayed injury of A. aequalis to rice seedling, and its influence of seedling stand were also investigated in relation to rice grain yield. Dry weight of A. aequalis was rapidly increased with delay in control time from 42g/$m^2$at March 15 to 237g/$m^2$ at May 15. The amount of its regrowth at seeding time was highest with 68.3g, when paraquat was applied at March 15, then decreased thereafter and it was less than 6.2g when paraquat was applied after April 15 which indicates above 98% control rate. The control rate of A. aequalis, at 30 days after paraquat application way likewise similar to that the seeding time. Rice seedling stands in the plot treated with paraquat before April 15 were not affected by decayed injury of A. aequalis while decayed injury of 3 to 4 degree for those after April 30 application was noted. Dwarf virus disease on rice seedling due to occurrence of A. aequalis was not observed when A. aequalis was controled from March 30 to May 15 while it was occurred in the plot of March 15 application and the untreated control. The control plot of A. aequalis at April 15 had the highest grain yield with 4.79ton/10a. Based on control rate of A. aequalis, seedling stands of rice, virus disease, and rice grain yield, the most suitable control time of A. aequalis in no-tillage dry seeded rice is considered to be about April 15.

  • PDF

A Case Study on the Effective Liquid Manure Treatment System in Pig Farms (양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사)

  • Kim, Soo-Ryang;Jeon, Sang-Joon;Hong, In-Gi;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2012
  • The purpose of the study is to collect basis data for to establish standard administrative processes of liquid fertilizer treatment. From this survey we could make out the key point of each step through a case of effective liquid manure treatment system in pig house. It is divided into six step; 1. piggery slurry management step, 2. Solid-liquid separation step, 3. liquid fertilizer treatment (aeration) step, 4. liquid fertilizer treatment (microorganism, recirculation and internal return) step, 5. liquid fertilizer treatment (completion) step, 6. land application step. From now on, standardization process of liquid manure treatment technologies need to be develop based on the six steps process.