• Title/Summary/Keyword: 부산물석회

Search Result 59, Processing Time 0.023 seconds

Application of Precast Concrete Products of Non-Sintered Cement Mortar based on Industrial by-Products (산업부산물을 이용한 비소성 시멘트 모르타르의 프리캐스트콘크리트 제품 적용성 평가)

  • Na, Hyeong-Won;Moon, Kyoung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • This study aimed to develop non-sintered cement that could replace portland cement which emits large amount of carbon dioxide during firing process. For this purpose, ground granulated blast furnace slag, type c fly ash and slaked lime were used. In addition, through the experimental results, the characteristics of the non-sintered cement binders according to the mixing ratios will be identified, and the utilization plans for the precast concrete products will be presented. In this experiment, non-sintered cement binders using industrial by-products were prepared to compare the flexural strength and compressive strength of each of the 3, 7 and 28 days. As a result, the results satisfy the KS of the target product proposed in this study. Therefore, this study presents the possibility of using precast concrete products by developing non-sintered cement binders using industrial by-products.

A Study on the Admixture Stabilization of Domestic Coal Ashes as the Fill Material (성토재로서 석탄회의 안정제 혼합 효과에 관한 연구)

  • 박은영;김진만
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1995
  • Recently, the treatment of coal ashes produced from thermal electric power plants have been raised as a serious problem in according to the increasing of electric power demand in Korea. This paper deals with a re -use method of coal ash as a fill material. Two domestic coal ashes are mixed with cement and lime to improve the mechanical properties of coal ash. The mechanical properties such as compressive strength, compressive deformation, permeability and frost heaving property are investigated in according to the change of admixture rate, curing temperature and curing time. In this study, it is found coal ash (fly ash+bottom ash) and fly ash with 2%~3% cement can be used as a fill material, respectively. It is also found the frost heaving properties of coal ash is effectively improved by the mixture of 6%~9% cement.

  • PDF

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.

A Fundamental Study on Shearing/Bonding Characteristics of Interface Between Rock Mass and Backfills in Mine Openings (폐광산 채움재와 암반 경계부의 전단 및 접합특성에 관한 기초 연구)

  • Kim, Byung-Ryeol;Lee, Hyeon-woo;Kim, Young-Jin;Cho, Kye-Hong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.623-646
    • /
    • 2021
  • As the demand for electric power increases with acceleration of electrification at home and abroad, the needs for coal-fired electrical power plant are accordingly increased. However, these coal-fired electrical power plants induce also many environmental problems such as increase of air pollutants, increase of possibility of land contamination by reclamation of coal ash, even though these power plants have a good economical efficiency. In case of a by-product of coal-fired electrical power plants, only 70% of them are recycled and the remaining 30% of by-product are fully buried in surrounding ground. Consequently, this study deals with coal ash backfilling mechanism in abandoned mine openings for the purposes of increasing the coal ash recycling rate as well as securing the mine area stability. In order to analyze the backfill and ground reinforcement by interaction between rock mass and backfills, the copying samples of discontinuous surface with different roughnesses were produced for bond strength tests and direct shear tests. And statistical analysis was also conducted to decide the characteristics of bond and shear behavior with joint roughness and their curing day. Numerical simulations were also analyzed for examining the effect of interface behavior on ground stability.

CaO Optimal Classification Conditions for the Use of Waste Concrete Fine Powder as a Substitute for Limestone in Clinker Raw Materials (폐콘크리트 미분말을 클링커 원료의 석회석 대체재로 사용하기 위한 CaO 최적 분급 조건)

  • Ha-Seog Kim;Sang-Chul Shin
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.147-156
    • /
    • 2024
  • This study aims to reduce CO2 generated during the manufacturing process by using limestone (CaCO3), a carbonate mineral used in the production of cement clinker, as a decarbonated raw material that does not contain CO2. Among various industrial by-products, we attempted to use cement paste attached to waste concrete. In general, limestone for cement must have a CaCO3 content of at least 80% (CaO, 44% or more) to ensure the quality of cement clinker. However, the CaO content of waste concrete fine powder is about 20% on average, so in order to use it as a cement clinker raw material, the CaO content must be increased to more than 35%. Therefore, by using the difference in hardness of the mineral composition of waste concrete fine powder to selectively crush CaO type minerals with relatively low hardness, classify and sieve, the CaO content can be increased by more than 35%. Accordingly, in this study, we experimentally and statistically reviewed and analyzed the optimal conditions for efficiently separating CaO and SiO2 and other components by selectively pulverizing minerals containing relatively low CaO through a grinding process. As a result of the optimal grinding conditions experiment, it was found that the optimal conditions were a grinding time of less than 5 minutes, a type of material to be crushed of 30 mm, and an amount of material to be crushed of 1.0 or more. However, it is judged that it is necessary to review pulverized materials of mixed particle sizes rather than pulverized products of single particle size.

Chemical Properties and Spectroscopic Characteristics of Humic Fractions Isolated from Commercial Organic Fertilizers (국산(國産) 유기질비료(有機質肥料)의 부식조성(腐植組成) 및 분광학적(分光學的) 특성(特性))

  • Kim, Jeong-Je;Yang, Jae-E;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.44-52
    • /
    • 1996
  • Humic substances of 17 organic fertilizers available on the market were the objects of study. The list of ingredients for formulation of them comprised fish meal. bone meal, oil-cakes, brewer's grains, peat, sawdust, wood bark, zeolite, soil conditioner, live-stock droppings, amino acid fermentation byproduct, chaff, limestone and others. Humic and fulvic acids were isolated from those substances and given chemical and spectroscopic analyses. Nutritional values of the organic fertilizers showed big diversity. Humification of organic matter was incomplete for some of the fertilizers as indicated by a high C/N ratio. Extractable humic acid percentage was higher, in general, than that of fulvic acid. Also the relative content of humin increased with advanced humification. Total acidity was closely related to phenolic hydroxyl groups. Relationships between carboxyl and hydroxyl groups. and carboxyl and alcoholic hydroxyl groups were very significant. Ultraviolet and visible light absorption spectra of humic and fulvic acids were substantially similar. The types of humic acids were B. P, and Rp. Two humic acids of the 17 samples belonged to B type. 3 to P type and all the rest to Rp type.

  • PDF

A Study on the Factors Affecting the Strength of Alkali-Activated Slag Binders (알칼리 활성화 슬래그 결합재의 강도 발현 인자에 관한 연구)

  • Hwang, Byoung-Il;Kang, Suk-Pyo;Kim, Sang-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.130-137
    • /
    • 2018
  • In the construction industry, research on alkali activated cement using fly ash or blast furnace slag fine powder has been published in Korea and abroad as a way to reuse industrial byproducts without using cement at all and to obtain economical effects at the same time. the purpose of this paper is to evaluate the effect of the ratio and coefficient of hydration ratio and lime saturation degree on the strength of alkali activated slag cement by chemical quantitative analysis of alkali activated slag cement used in the management of existing portland cement. as a result, it was confirmed that the ratio and coefficient of hydration ratio and lime saturation are all within a certain range.

Geotechnical Engineering Characteristics and Consolidation Settlement Estimation of Waste Lime Landfill (폐석회 매립지반의 지반공학적 특성 및 압밀침하량산정)

  • Shin, Eun-Chul;Lee, Ae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • The purpose of this study is to examine the consolidation characteristics of waste landfill from sodium carbonate production. The waste lime is a byproduct from the production of soda ash. The consolidation settlement of waste lime landfill was determined for waste lime specimen which obtained from the field boring. The consolidation tests are conducted for determination of the primary and secondary consolidation settlements. The waste lime is classified as an organic soil with high plasticity. As a result of an organic content test, the contents of organic matter in waste lime is much higher than that of normal clay. Finally, the total consolidation settlement of waste lime landfill is calculated by using a theoretical method and computer program for the given initial void ratio, compression index, and embankment height.

A Study on the Application Limestone Sludge to the Flue Gas Desulfurization Process (제철 산업부산물인 석회석 슬러지의 배연탈황 공정 적용에 관한 연구)

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Lee, Jong Kyu;Song, Hun;Yun, Young Min
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.575-583
    • /
    • 2014
  • The flue gas desulfurization (FGD) process is currently the most effective process utilized to remove sulfur dioxide from stack gases of coal-fired plants. However, FGD systems use a lot of limestone as desulfurizing agent. In this study, we use limestone sludge, which is a by-product of the steel industry, to replace the desulfurizing agent of the FGD system. The limestone particle size is found to be unrelated to the desulfurizing rate; the gypsum purity, however, is related. Limestone sludge mixes with limestone slurry delivered at a constant rate in a desulfurizing agent with organic acid are expected to lead to a high desulfurization efficiency and high quality by-product (gypsum).

A Study on the Method for Quantifying CO2 Contents in Decarbonated Slag Materials by Differential Thermal Gravimetric Analysis (DTG 분석법을 활용한 슬래그류 비탄산염 재료의 CO2 정량 측정방법 연구)

  • Jae-Won Choi;Byoung-Know You;Yong-Sik Chu;Min-Cheol Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • Limestone (CaCO3, calcium carbonate), which is used as a raw material in the portland cement and steel industry, emits CO2 through decarbonation by high temperatures in the manufacturing process. To reduce CO2 emissions by the use of raw materials like limestone, it has been proposed to replace limestone with various industrial by-products that contain CaO but less or none of the carbonated minerals, that cause CO2 emissions. Loss of Ignition (LOI), Thermogravimetric analysis (TG), and Infrared Spectroscopy (IR) are used to quantitative the amount of CO2 emission by using these industrial by-products, but CO2 emissions can be either over or underestimated depending on the characteristics of by-product materials. In this study, we estimated CO2 contents by LOI, TG, IR and DTG(Differential Thermogravimetric analysis) of calcite(CaCO3) and samples that contain CO2 in the form of carbonate and whose weight increases by oxidation at high temperatures. The test results showed for CaCO3 samples, all test methods have a sufficient level of reliability. On the other hand, for the CO2 content of the sample whose weight increases at high temperature, LOI and TG did not properly estimate the CO2 content of the sample, and IR tended to overestimate compared to the predicted value, but the estimated result by DTG was close to the predicted valu e. From these resu lts, in the case of samples that contain less than a few percent of CO2 and whose weight increases during the temperature that carbonate minerals decompose, estimating the CO2 content using DTG is a more reasonable way than LOI, TG, and IR.