• Title/Summary/Keyword: 부등기둥축소

Search Result 21, Processing Time 0.029 seconds

A Column Shortening on High-Rise Building and Structural Effect under seismic load (초고층 건물의 기둥축소와 지진하중에 대한 구조적 영향)

  • 정은호;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.59-68
    • /
    • 1997
  • The necessity of a high-rise building in big cities gave a new problem to structural engineers. The shortening effect of vertical members needs special considerstion in the desigh and construction of high-rise buildings. The shortening of each column transfers load to nonstructural members such as partitions, cladding, and M/E systems which are not designed to carry gravity loads. Also, the slabs and beams will tilt due to the cumulative differential shortening of adjacent vertical members. The main purpose of estimating the total shortening of vertical structural members is to compensate the differential shortening between adjacent members. This paper presents the structural effect of differential shortening between in main structural members. Lateral earthquake load is applied to the 52 story concrete structure which has an initial vertical displacement due to the gravity load. Shortening amount for each vertical member was estimated using the computerized column shortening software. Comparison of stresses between the shortening corrected structure and the uncorrecated structure due to earthquake load was discussed.

  • PDF

Prediction of Differential Column Shortening for Reinforced Concrete Tall Buildings (시공단계를 고려한 철근콘크리트 고층건물 기둥의 부등축소량 해석)

  • Lee, Tae-Gyu;Kim, Jin-Keun;Song, Jin-Gyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.99-107
    • /
    • 1999
  • In this paper, the prediction method of the differential column shortening for cracked reinforced concrete tall buildings due to the construction sequence is presented. The cracked sectional properties from the strain and curvature of the sectional centroid is directly used. And the stiffness matrix of concrete elements considering the axial strain-curvature interaction effect is adopted. The creep and shrinkage properties used in the predictions were calculated in accordance with ACI 209, CEB-FIP 1990, and B3 model code. In order to demonstrate the validity of this algorithm, the prediction by the proposed method are compared with both the results of the in-situ test and the results by other simplified method. The proposed method is in good agreement with experimental results, and better than the simplified method.

Structural Analysis of a Tall Building Considering Inelastic Differential Column Shortening (비탄성 부등기둥축소를 고려한 초고층 구조 해석)

  • Kim, Han-Soo;Jeomg, Se-Hun;Shin, Seung-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.175-176
    • /
    • 2009
  • An improved column shortening analysis method which can be used in designing the horizontal members has been proposed. If you use this analysis method which is used effective modulus method by EMM or AEMM, you will get more exactly moments on the horizontal members.

  • PDF

Optimal Compensation of Differential Column Shortening in Tall Buildings for Multi Column Groups (고층건물의 멀티 기둥그룹에 대한 부등기둥축소량의 최적보정기법)

  • Kim, Yeong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 2008
  • This study presents optimal compensation algorithm of differential column shortening for more than two column groups. The proposed algorithm produces the minimum story groups and their compensation thicknesses which satisfy constraint conditions on performance and construction and enables not only the relative compensation but also the mixed compensation considering absolute shortening. The simulated annealing algorithm is used as the main optimization technique. The applicability of the proposed algorithm was verified by applying it to the 61-storey building where compensation of differential column shortening had already been performed. Using, the proposed algorithm compensation was performed easily and the number of compensation was less than the field method.

Field Measurement and Compensation Method of Column Shortening for SRC Columns in 37-story Residential Building (37층 초고층주상복합건물 SRC기둥의 기둥축소량 현장계측 및 보정법)

  • Song, Hwa-Cheol;Do,e Guen-Young;Cho, Hun-hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.145-152
    • /
    • 2005
  • Long-term axial shortening of the vertical elements of tail buildings results in differential movements between two elements and may lead to the additional moments of connection beam and slab elements, and other secondary effects, such as cracks of partitions or curtain walls. Accurate prediction of time-dependent column shortening is essential for tall buildings from both strength and serviceability aspects. The compensation method is different from reinforced concrete and SRC(Steel Reinforced Concrete) members. The SRC columns are usually compensated according to total differential shortening between two vertical elements. In this study, column shortenings of 37-story W building under construction are predicted and compensated. The SRC column shortenings are compared with the actual column shortening by field measurement and the column shortenings are reanalysed and recompensated.

A Study of present and future highrise residential complex buildings in a structural practitioner's point of view (구조 설계 측면에서 본 국내 초고층 주거복합 건물의 현재와 미래)

  • Kim Jong-Ho
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.186-193
    • /
    • 2003
  • 최근 설계 및 시공되고 있는 국내 초고층 주거복합건물들의 유형과 구조설계내용들을 재점검하고 더 안전하고 경제적인 초고층 주거복합건물을 설계하기 위한 향후 과제로서 고강도 콘크리트 사용의 범용화와 구조적으로 유리한 기둥 배치계획과 횡력저항 요소로서의 Tubular 구조 및 Flat slab 등가골조 적용 등을 추가로 제시하며 또한 P.O.E의 구조적 측면에서의 도입자 인건비상승 및 후분양제도실시로 인한 공기단축등을 대비하는 철골조 아파트에 대한 지속적 상세연구가 필요하다고 판단된다. 또한 기둥의 부등축소문제, 내구성증대 및 거주성 향상문제 등도 관련 전문가들과 계속적 연구와 혐의가 필요한 것으로 생각된다.

  • PDF

Determination of Efficient Shoring System in RC Frame Structures Considering Time-Dependent Behavior of Concrete (시간의존적 거동을 고려한 철근콘크리트 골조의 효율적인 지지시스템 결정)

  • 김진국;홍수미;곽효경
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.225-239
    • /
    • 2004
  • In this paper, systematic analyses for the shoring systems installed to support applied loads during construction are performed on the basis of the numerical approach introduced in the previous study. Structural behaviors require changes in design variables such as types of shoring systems, shore stiffness and shore spacing. In this paper, the design variable are analyzed and discussed. The time dependent deformations of concrete and construction sequences of frame structures are also taken into account to minimize structural instability and to improve design of shoring system, because those effects may increase axial forces delivered to shores. From many parametric studies, it can be recommended that the most effective shoring system is 2SlR(two shores and one reshore)

Prediction and Compensation of Differential Column Shortening in High-Rise Building Structures (고층건물 기둥의 부등축소량 예측 및 시공오차 보정에 관한 연구)

  • 조창휘;송진규;이현호;조석희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.258-266
    • /
    • 1996
  • The purpose of this study is to make a reasonable correction in construction stage through exact prediction of long-time differential column shortening that occurs in the high-rise RC building. For this, a self-developed program adopted PCA code is used to predict differential column shortening with sequential loading process. Using this program, the amount of the different column shortening of Amatapura Apartment in Indonesia is predicted and the effect is analyzed. From the result, the major factor affecting the shortening amount in columns is elastic strain and the effect of shrinkage is very small rather than creep. And maximun differential column shortening is appeared near the middle of the building.

  • PDF

Prediction and Compensation of Differential Column Shortening in 52 story Amatapura Apartment Building (52층 아마타푸라 아파트의 기둥 부등축소량 예측 및 보정에 관한 연구)

  • 조석희;송진규;정하선;이상순;이태규;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.397-402
    • /
    • 1998
  • The objectives of this paper are to estimate differential column Shortening and to determine appropreate compensation amount in 52 story Amatapura Apartment in Indonesia. for this, a computer program based on PCA and CEB-FIP code is developed. The results show that Elastic and Creep strain are the main factors of column shortening and the maximum differential shortening is appeared near the middle of the building height. The results between field survey and estimation have some difference, the most influential factor of the difference can be lateral restraints provided by horizontal members, which cannot be handled in this developed program. Hence introducing the modification factors from various field survey, this program can be used properly in design and construction procedures.

  • PDF