• 제목/요약/키워드: 부도예측모형

검색결과 64건 처리시간 0.025초

딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증 (Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM)

  • 차성재;강정석
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.1-32
    • /
    • 2018
  • 본 연구는 경제적으로 국내에 큰 영향을 주었던 글로벌 금융위기를 기반으로 총 10년의 연간 기업데이터를 이용한다. 먼저 시대 변화 흐름에 일관성있는 부도 모형을 구축하는 것을 목표로 금융위기 이전(2000~2006년)의 데이터를 학습한다. 이후 매개 변수 튜닝을 통해 금융위기 기간이 포함(2007~2008년)된 유효성 검증 데이터가 학습데이터의 결과와 비슷한 양상을 보이고, 우수한 예측력을 가지도록 조정한다. 이후 학습 및 유효성 검증 데이터를 통합(2000~2008년)하여 유효성 검증 때와 같은 매개변수를 적용하여 모형을 재구축하고, 결과적으로 최종 학습된 모형을 기반으로 시험 데이터(2009년) 결과를 바탕으로 딥러닝 시계열 알고리즘 기반의 기업부도예측 모형이 유용함을 검증한다. 부도에 대한 정의는 Lee(2015) 연구와 동일하게 기업의 상장폐지 사유들 중 실적이 부진했던 경우를 부도로 선정한다. 독립변수의 경우, 기존 선행연구에서 이용되었던 재무비율 변수를 비롯한 기타 재무정보를 포함한다. 이후 최적의 변수군을 선별하는 방식으로 다변량 판별분석, 로짓 모형, 그리고 Lasso 회귀분석 모형을 이용한다. 기업부도예측 모형 방법론으로는 Altman(1968)이 제시했던 다중판별분석 모형, Ohlson(1980)이 제시한 로짓모형, 그리고 비시계열 기계학습 기반 부도예측모형과 딥러닝 시계열 알고리즘을 이용한다. 기업 데이터의 경우, '비선형적인 변수들', 변수들의 '다중 공선성 문제', 그리고 '데이터 수 부족'이란 한계점이 존재한다. 이에 로짓 모형은 '비선형성'을, Lasso 회귀분석 모형은 '다중 공선성 문제'를 해결하고, 가변적인 데이터 생성 방식을 이용하는 딥러닝 시계열 알고리즘을 접목함으로서 데이터 수가 부족한 점을 보완하여 연구를 진행한다. 현 정부를 비롯한 해외 정부에서는 4차 산업혁명을 통해 국가 및 사회의 시스템, 일상생활 전반을 아우르기 위해 힘쓰고 있다. 즉, 현재는 다양한 산업에 이르러 빅데이터를 이용한 딥러닝 연구가 활발히 진행되고 있지만, 금융 산업을 위한 연구분야는 아직도 미비하다. 따라서 이 연구는 기업 부도에 관하여 딥러닝 시계열 알고리즘 분석을 진행한 초기 논문으로서, 금융 데이터와 딥러닝 시계열 알고리즘을 접목한 연구를 시작하는 비 전공자에게 비교분석 자료로 쓰이기를 바란다.

다수의 분류 기법의 예측 결과를 결합하기 위한 혼합 정수 계획법의 사용 (Aggregating Prediction Outputs of Multiple Classification Techniques Using Mixed Integer Programming)

  • Jo, Hongkyu;Han, Ingoo
    • 지능정보연구
    • /
    • 제9권1호
    • /
    • pp.71-89
    • /
    • 2003
  • 경영 분류 문제에 대한 많은 연구들은 여러가지 기법들간의 성과 비교에 대한 것이었지만, 각각의 연구들마다 가장 좋은 기법이 어떤 것인가에 대해서는 상이한 결론을 내고 있다. 다수의 분류 기법 중에서 가장 좋은 것을 사용하는 방법에 대한 대안으로,분류 기법을 통합하여 성과를 향상시키는 방법이 있다. 본 연구에서는 개별 분류 기법의 결과를 선형 결합하여 예측력을 높이는 방법을 제시하였다. 최 적 선형 결합 가중치를 계산하기 위해 혼합 정수 계 획 법을 사용하였다. 목적 함수로 사용한 오분류 비용의 최소화에서 오분류 비용은 부도 기업을 모형에서 정상으로 예측한 오류와 정상기업을 모형에서 부도 기업으로 예측한 오류의 합으로 정의하였다. 문제 풀이 과정을 단순화하기 위하여 본 논문에서는 절사점 (cutoff value)을 고정하였고, 경계 함수 (threshold function)를 배제하였다. 정수계획법의 계산을 위해 branch 8, bound 방법을 사용하였다. 선형 결합에 의한 모형의 예측력이 개별 기법에 의해 구축된 모형의 예측력을 상회하였고, 그 차이가 통계적으로도 유의하였다.

  • PDF

부트스트랩 샘플링 최적화를 통한 앙상블 모형의 성능 개선 (Improving an Ensemble Model by Optimizing Bootstrap Sampling)

  • 민성환
    • 인터넷정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.49-57
    • /
    • 2016
  • 앙상블 학습 기법은 개별 모형보다 더 좋은 예측 성과를 얻기 위해 다수의 분류기를 결합하는 것으로 예측 성과를 향상시키는데에 매우 유용한 것으로 알려져 있다. 배깅은 단일 분류기의 예측 성과를 향상시키는 대표적인 앙상블 기법중의 하나이다. 배깅은 원 학습 데이터로부터 부트스트랩 샘플링 방법을 통해 서로 다른 학습 데이터를 추출하고, 각각의 부트스트랩 샘플에 대해 학습 알고리즘을 적용하여 서로 다른 다수의 기저 분류기들을 생성시키게 되며, 최종적으로 서로 다른 분류기로부터 나온 결과를 결합하게 된다. 배깅에서 부트스트랩 샘플은 원 학습 데이터로부터 램덤하게 추출한 샘플로 각각의 부트스트랩 샘플이 동일한 정보를 가지고 있지는 않으며 이로 인해 배깅 모형의 성과는 편차가 발생하게 된다. 본 논문에서는 이와 같은 부트스트랩 샘플을 최적화함으로써 표준 배깅 앙상블의 성과를 개선시키는 새로운 방법을 제안하였다. 제안한 모형에서는 앙상블 모형의 성과를 개선시키기 위해 부트스트랩 샘플링을 최적화하였으며 이를 위해 유전자 알고리즘이 활용되었다. 본 논문에서는 제안한 모형을 국내 부도 예측 문제에 적용해 보았으며, 실험 결과 제안한 모형이 우수한 성과를 보였다.

AdaBoost 알고리즘기반 SVM을 이용한 부실 확률분포 기반의 기업신용평가 (Corporate Credit Rating based on Bankruptcy Probability Using AdaBoost Algorithm-based Support Vector Machine)

  • 신택수;홍태호
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.25-41
    • /
    • 2011
  • 최근 몇 년간 SVM(support vector machines)기법은 패턴인식 또는 분류의사결정문제를 위한 분석기법으로서 기존의 데이터마이닝 기법과 비교할 때, 매우 높은 성과를 갖는 것으로 인식되어 왔다. 더 나아나 많은 연구자들은 SVM기법이 1980년대 이후 대표적인 예측 및 분류모형으로 인정받은 인공신경망기법(ANNs : Artificial Neural Networks)에 비해 더 성과가 좋다는 사실을 실증적으로 입증해 왔다(Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al., 2005; Kim, 2003). 일반적으로 이와 같이 다양한 데이터마이닝 기법에 의해 분석되는 이진분류 또는 다분류 의사결정문제들은 특히 금융분야 등에 있어서 오분류비용에 민감하며, 이로 인한 오분류의 경제적 손실도 상대적으로 매우 크다고 할 수 있다. 따라서 기업부도예측모형과 같은 이진분류모형의 결과값을, 부도확률에 기초하여 정교하게 계산된 사후확률의 개념으로서 다분류의 신용등급평가의 문제로 변환할 필요가 있다. 그러나, SVM 모형의 결과값은 기본적으로 그와 같은 부도확률분포를 보여주지 않는다. 따라서, 그러한 확률분포를 정교하게 보여줄 방법을 제시할 필요가 있다(Platt, 1999; Drish, 2001). 본 연구는 AdaBoost 알고리즘기반의 SVM 모형을 이용하여, 이진분류모형으로서 IT 기업의 부실예측모형에 적용한 후, 이 SVM 모형의 예측결과를 SVM의 손실함수에 적용하여 계산된 값을 사후부도확률의 정규분포 특성에 따라 이를 구간화하여 IT기업에 대한 다분류 신용등급 평가의 문제로 전환시키는 방법을 제시하였다. 그리고 본 연구에서 제안하는 방법은 이러한 AdaBoost 알고리즘기반 SVM 모형이 각 기업이 고유한 신용위험(부도확률)을 갖고 있다는 조건하에서, 신용등급부여를 위한 부도확률분포 구간을 정교하게 조정함으로써 오분류 문제를 좀 더 줄일 수 있음을 제시하였다.

약체연결뉴런 제거법에 의한 부도예측용 인공신경망 모형에 관한 연구 (Weak-linked Neurons Elimination Method based Neural Network Models for Bankruptcy Prediction)

  • 손동우;이웅규
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 2000년도 춘계학술대회
    • /
    • pp.115-121
    • /
    • 2000
  • 본 연구는 인공신경망 모형에서 최적 입력 변수를 선정하기 위하여 새로운 선처리 기법인 약체연결뉴런 제거법을 제안하고 그 예측력의 우월성을 순수 인공신경망과 의사결정트리로 선처리한 인공신경망 모델과 각각 비교했으며, 그 결과를 보면 본 연구에서 제안하고 있는 약체연결뉴런 제거법에 의해 입력변수 선정과정을 거친 모델의 성과가 순수 인공신경망이나 의사결정트리로 선처리한 인공신경망 모델에 비해 예측적중율이 우수한 것으로 나타났다.

  • PDF

효과적인 기업부도 예측모형을 위한 ROSE 표본추출기법의 적용 (Application of Random Over Sampling Examples(ROSE) for an Effective Bankruptcy Prediction Model)

  • 안철휘;안현철
    • 한국콘텐츠학회논문지
    • /
    • 제18권8호
    • /
    • pp.525-535
    • /
    • 2018
  • 분류 문제에서 특정 범주의 빈도가 다른 범주에 비해 과도하게 높은 경우, 왜곡된 기계 학습을 유발할 수 있는 데이터 불균형(imbalanced data) 문제가 발생한다. 기업부도 예측 문제도 그 중 하나인데, 일반적으로 금융기관과 거래하는 기업들의 부도율은 대단히 낮아서, 부도 사례보다 정상 사례의 빈도가 월등히 높은 데이터 불균형 문제가 발생하고 있다. 이러한 데이터 불균형 문제를 해결하기 위해서는 적절한 표본추출 기법이 적용될 필요가 있으며, 지금껏 소수 범주 데이터를 복원 추출함으로써 다수 범주 데이터와 비율을 맞추어 데이터 불균형을 해결하는 오버 샘플링(oversampling) 기법이 주로 활용되어 왔다. 그러나 전통적인 오버 샘플링은 과적합화(overfitting)가 발생할 위험이 높아질 수 있는 단점이 있다. 이러한 배경에서 본 연구는 효과적인 기업부도 예측 모형 학습을 위한 표본추출 기법으로 2014년에 Menardi와 Torelli가 제안한 ROSE(random over sampling examples) 기법을 제안한다. ROSE 기법은 학습에 사용될 사례를 반복적으로 새롭게 합성하여 생성(synthetic generation)하는 기법으로, 과적합화 문제를 회피하면서도 분류 예측 정확도 개선에 도움을 줄 수 있다. 이에 본 연구에서는 ROSE 기법을 가장 성능이 우수한 이분류기로 알려진 SVM(support vector machine)과 결합하여 국내 한 대형 은행의 기업부도 예측에 적용해 보고, 다른 표본추출 기법들과의 비교연구를 수행하였다. 실험 결과, ROSE 기법이 다른 기법에 비해 통계적으로 유의한 수준으로 SVM의 예측정확도 개선에 기여할 수 있음을 확인하였다. 이러한 본 연구의 결과는 부도예측 외에 다른 사회과학 분야 예측문제의 데이터 불균형 문제 해결에도 ROSE가 우수한 대안이 될 수 있다는 사실을 시사한다.

부도예측을 위한 확신 기반의 선택 접근법에서 앙상블 멤버 사이즈의 영향에 관한 연구 (Impact of Ensemble Member Size on Confidence-based Selection in Bankruptcy Prediction)

  • 김나라;신경식;안현철
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.55-71
    • /
    • 2013
  • 부도예측을 위한 지식기반시스템에서 모델은 실적에 영향을 끼치는 주요한 요인이다. 예측 모형의 개발에 있어 초기 연구들은 통계기법 및 인공지능기법들을 이용하여 최고 실적을 가지는 단일 모델을 만드는데 주력하였다. 1980년대 중반 이후에는 다수 기술의 통합(하이브리드), 더 나아가, 다수 모델의 결과의 결합(앙상블) 기법이 수많은 실험에서 개별 모델들보다 더 나은 결과를 보여왔다. 다수 모델들의 출력값들을 결합하여 한 개의 최종 예측값을 산출하는 앙상블 모델링에서 결합기법은 앙상블의 예측 정확도에 영향을 끼치는 중요한 이슈이다. 본 논문은 부도예측을 위한 앙상블 결합기법으로서 앙상블 멤버들이 다른 유형의 연속형 수치 출력값들을 산출하더라도 통일된 확신을 측정할 수 있는 확신 기반의 선택 접근법을 제안하고 이에 대한 앙상블 멤버 사이즈의 영향을 연구하였다. 실험 결과는 앙상블 멤버들의 생성 타입에 따라 결합하는 모델 개수를 변화시켰을 때 가장 많은 기본 모델들을 가지는 앙상블에서의 제안 결합기법이 부도예측에 가장 자주 사용되는 다른 방법들에 비해서도 가장 높은 실적을 가진다는 것을 보였다.

신용평가에서 로지스틱 회귀를 이용한 미결정자 추론 (Undecided inference using logistic regression for credit evaluation)

  • 홍종선;정민섭
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권2호
    • /
    • pp.149-157
    • /
    • 2011
  • 본 연구는 신용평가 과정에서 발생하는 미결정자를 결측자료 문제로 간주하여 MAR와 MNAR 가정 하에서 추론한다. MAR 가정에서 미결정자 추론은 결정자들에 대한 로지스틱 회귀모형의 회귀 계수벡터를 이용하여 미결정자의 부도 확률을 구한 후 결정자의 부도확률과 비교하여 미결정자의 미래 상태를 판단한다. 그리고 MNAR 가정에서의 미결정자 추론은 특성변수가 추가한 로지스틱 모형으로부터 미결정자의 부도확률을 구하고 미결정자를 예측하는 방법을 제안하였다. 두 종류의 실제 자료에 대하여 모의실험을 한 결과, MAR 가정에서 미결정자의 비율이 증가하더라도 원자료의 오분류율과 추론한 결과 차이가 없으며, MNAR 가정에서는 추가적인 변수를 고려하여 미결정자를 추정하였기 때문에 미결정자의 오분류율이 MAR 가정에서의 오분류율보다 감소하고 나아가 전체에서 미결정자가 차지하는 비율이 증가함에 따라 전체의 오분류율이 더욱 감소함을 발견하였다.

기업부도예측을 위한 인공신경망 모형에서의 사례선택기법에 의한 데이터 마이닝 (Data Mining using Instance Selection in Artificial Neural Networks for Bankruptcy Prediction)

  • Kim, Kyoung-jae
    • 지능정보연구
    • /
    • 제10권1호
    • /
    • pp.109-123
    • /
    • 2004
  • 기업부도예측은 재무와 경영의사결정문제에서의 주된 인공신경망 응용분야라 할 수 있다. 일반적으로 인공신경망은 이 분야에서 매우 좋은 성과를 보이는 것으로 알려져 있지만 종종 잡음이 심한 데이터에 대해서는 일관성 있고 예측가능한 성과를 보이지 못하는 경우가 있다. 특히 학습용 자료가 매우 많아서 학습시간과 자료수집비용이 과대한 경우에는 적절한 자료의 축소가 되지 않고는 인공신경망을 학습시키는 것이 불가능한 경우도 있다. 사례선택기법은 자료의 차원을 축약시켜 주며 직접적으로 자료를 축소시켜 주는 방법이다. 사례기반 학습기법에서는 이미 몇 연구가 사례선택기법의 필요성을 주장한 바 있으나 인공신경망 모형에서 사례선택기법의 필요성을 주장한 연구는 거의 없다. 본 연구에서는 기업부도예측을 위한 인공신경망 모형에서 유전자 알고리즘을 이용한 사례선택기법을 제안한다. 본 연구에서 유전자 알고리즘은 다층 인공신경망에서의 계층별 연결강도를 최적화하고, 동시에 학습에 적합한 사례를 선택한다. 유전자 알고리즘에 의해 결정된 계층별 연결강도는 역전파오류 학습기법에서 종종 발생하는 국부 최적해에 수렴하는 현상을 최소화해 줄 것으로 기대되고, 선택된 학습용 사례는 학습시간의 단축과 예측성과를 향상시켜 줄 것으로 기대된다. 본 연구에서는 제안한 모형과 주요 데이터 마이닝 기법들의 성과를 비교 연구한다. 실험결과, 제안된 방법이 인공신경망에서의 사례선택기법으로 유용한 것으로 나타났다.

  • PDF

퍼지신경망을 이용한 기업부도예측 (Bankruptcy Prediction using Fuzzy Neural Networks)

  • 김경재;한인구
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.135-147
    • /
    • 2001
  • 본 연구에서는 퍼지신경망을 이용한 기업부실예측모형을 제안한다. 신경망은 탁월한 학습능력을 가진 것으로 알려져 있으나, 잡음이 심한 재무자료에 대해서는 종종 일관되지 못하고 기대에 미치지 못하는 예측성과를 보인다. 이는 연속형의 형태를 지닌 독립변수와 과다한 양의 원자료로부터 예측에 필요한 일정한 패턴을 찾기가 어렵기 때문이다. 이러한 문제점은 예측모형에서의 독립변수와 종속변수간의 인과관계를 신경망이 용이하게 찾아낼 수 있도록 독립변수의 형태를 변환함으로써 해결한 수 있다. 이러한 해결방법의 하나는 기존 신경망에 퍼지집합의 개념을 적용하여 신경망 학습에 사용될 자료를 퍼지화하고 이를 신경망에 학습시키는 것이다 입력자료를 퍼지화 함으로써 정보의 손실 없이도 신경망이 자료 내의 복잡한 관계를 용이하게 학습하는 것이 가능하다. 본 연구에서 제안된 퍼지신경망을 기업부도예측에 적용한 결과, 퍼지신경망이 기존의 신경망보다 우월한 예측성과를 나타내었다.

  • PDF