• Title/Summary/Keyword: 부가 질량

Search Result 465, Processing Time 0.026 seconds

Re-derivation of Added Mass Coefficient of Circular Cylinder near Bottom Boundary (바닥경계 가까이 있는 원형실린더의 부가질량계수의 재유도)

  • 편종근;박창근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.275-280
    • /
    • 1994
  • The analytic solution of the forces acting on a horizontal circular cylinder affected by the bottom boundary is re-derived using the complex potential. The reason of the re-derivation of the analytic solution is such that it is found that the analytic solution of Yamamoto et al. (1974) does not simulate the behavior of the added mass coefficient accurately. The re-derived formula of the added mass coefficient CD is different from that of Yamamoto et al (1974), while the re-derived formula of Cm simulates the tendency of the behavior of the added mass coefficient success-fully.

  • PDF

Finite Element Analysis for Evaluation of Viscous and Eccentricity Effects on Fluid Added Mass and Damping (유체 부가질량 및 감쇠 결정시 점성 및 편심 영향에 대한 유한요소해석)

  • 구경회;이재한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2003
  • In general, simple fluid added mass method is used for the seismic and vibration analysis of the immersed structure to consider the fluid-structure interaction effect. Actually, the structural response of the immersed structure can be affected by both the fluid added mass and damping caused by the fluid viscosity. These variables appeared as a consistent matrix form with the coupling terms. In this paper, finite element formula for the inviscid fluid case and viscous fluid case are derived from the linearized Navier Stoke's equations. Using the finite element program developed in this paper, the analyses of fluid added mass and damping for the hexagon core structure of the liquid metal reactor are carried out to investigate the effect of fluid viscosity with variation of the fluid gap and Reynolds number. From the analysis results, it is verified that the viscosity significantly affects the fluid added mass and damping as the fluid gap size decrease. From the analysis results of eccentricity effect on the fluid added mass and damping of the concentric cylinders, the fluid added mass increase as the eccentricity increases, however the fluid damping increases only when the eccentricity is very severe.

Conservation for the Seismic Models of Intake Tower with Nonlinear Behaviors and Fluid Structure Interaction (비선형거동과 구조물유체상호작용을 고려한 취수탑 내진모델의 보수성평가)

  • Lee, Gye-Hee;Lee, Myoung-Kyu;Hong, Kwan-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.17-24
    • /
    • 2020
  • In this study, series of nonlinear seismic analysis were performed on a reinforced concrete intake tower surrounded by water. To consider the fluid effect around the structure, analysis models were composed using an added mass and CEL approach. At this time, the implicit method was used for the added mass model, and the explicit method was used for the fluid structure interaction model. The input motions were scaled to correspond to 500, 1000, and 2400 years return period of the same artificial earthquake. To estimate the counteractivity of the fluid coupled model, models without fluid effect were constructed and used as a reference. The material models of concrete and reinforcement were selected to consider the nonlinear behavior after yielding, and analysis were performed by ABAQUS. As results, in the acceleration response spectrum of the structure, it was found that the influence of the surrounding fluid reducing the peak frequency and magnitude corresponding to the fundamental frequency of the structure. However, the added mass model did not affect the peak value corresponding to the higher mode. The sectional moments were increased significantly in the case of the added mass model than those of the reference model. Especially, this amplification occurred largely for a small-sized earthquake response in which linear behavior is dominant. In the fluid structure interaction model, the sectional moment with a low frequency component amplifies compared to that of the reference model, but the sectional moment with a high requency component was not amplified. Based in these results, it was evaluated that the counteractivity of the additive mass model was greater than that of the fluid structure interaction model.

Derivation of Added Mass Matrix and Sloshing stiffness matrix of the Ideal Fluid using BEM and Application to the Seismic Analysis of Cylindrical Liquid storage tanks. (경계요소법에 의한 이상유체의 부가질량 및 슬러싱 강성행렬 도출과 원통형 액체 저장 탱크 지진응답 해석)

  • 김재관;이진호;진병무
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.83-98
    • /
    • 2000
  • 유연한 액체 저장탱크 내 유체의 부가질량 및 슬러싱 강성행렬을 도출하는 새로운 방법을 제시하였다. 비점성, 비압축성 이상유체를 표면 출렁임을 고려하여 경계요소법에 의하여 모델링하였다. 유체의 표면과 저장탱크 벽체의 접촉면과 같은 불연속 경계를 다루기 위해 특별한 과정을 도입하였다. 원통형 액체저장탱크의 지진응답해석에 적용하여 우수한 결과를 얻을 수 있음을 확인하였다.

  • PDF

dynamic Analysis of Ring-Stiffened Axisymmetric Shells (링보강 축대칭 쉘 구조물의 동적 해석)

  • 황철성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.83-98
    • /
    • 2000
  • 자오방향 및 주변방향으로 피르스트레스트 하중이 작용된 축대칭 쉘 구조물을 기하학적으로 축대칭인 구조물의 특성을 최대한으로 이용할 수 있도록 회전 링요소로 모델화하였다 보강링 요소의 모델은 축대칭 쉘요소를 이용하였으며 본체 구조물과 절점에서 부착되있는 것으로 가정하여 이의 편심을 고려하였다 유체-구조물의 상호관계는 접촉면에서 구조물의 가속도에 비례한 부가질량으로 표현하였으며 부가질량은 유체를 비점성 비압축 및 비회전을 가정하여 유한요소법에 의해 구하였다 이에 대한 수치해석을 통하여 고유진동해석 및 지진하중을 주하중으로 한 동적해석을 실시하였다 프로그램을 통하여 해석한 결과를 프리스트레스 하중 하에서 고유진동수에 대한 정해와 비교한 결과 20개의 요소로 모델링한 경우에서도 정해와 근접한 해를 얻을 수 있었다 또한 내부유체가 있는 경우와 링보강을 한 경우에 대한 고유진동수를 문헌과 비교한 결과 근접한 해를 얻을 수 있었다.

  • PDF

An Added-mass Modification Method Using Experimental and Numerical Frequency Analysis for Floodgate Subjected to Hydro-dynamic Loading (고유진동수 현장계측과 수치해석을 이용한 수문의 부가질량 보정법)

  • Kim, Ho Seung;Bea, Jung Ju;Kim, Yong Gon;Lee, Jee Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.607-616
    • /
    • 2009
  • In this paper, a method is proposed to accurately and efficiently estimate the equivalent added mass of hydro-dynamic pressure on dam floodgates subjected to earthquake loading. The present method is based on a relatively-simple procedure using on-site vibration measurement and finite element frequency analysis, which is sufficiently practical to be used in the earthquake resistance performance evaluation of dam floodgates.

Vibration Analysis of Quadrangular Plate having Attachments by the Assumed Mode Method (Assumed Mode Method에 의한 부가물(附加物)을 갖는 임의(任意) 사각형(四角形) 평판(平板)의 진동해석(振動解析))

  • S.Y. Han;Y.C. Huh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.116-125
    • /
    • 1995
  • In ship and of offshore structures, there exist many local panels of various shapes having many kinds of attachments reducible to damped spring-mass systems. For the vibration analysis of panels, analytical methods such as Rayleight-Ritz method or the assumed mode method can be efficiently applied. There have been many studies on the vibration analysis of rectangular panels using the analytical methods but relatively few for arbitrary shape panels. An efficient formulation based on the assumed mode method is presented for the vibration analysis of an arbitrary quadrangular plate having concentrated masses, supporting springs such as pillars and spring-mass systems. In the formulation, the natural coordinate system is used for the efficient treatment of an arbitrary quadrangular shape. Through some numerical calculations, accuracy and efficiency of the presented method are shown.

  • PDF

Study on the Motion Control of Tall Buliding Using Mega-Sub System (주(主)-부(副)구조 시스템을 이용한 초고층 건물의 진동제어에 관한 연구)

  • 김진구;송영훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.29-35
    • /
    • 1997
  • The megastructure combined with the modular concept is an effcient structural system adequate for ultra-tail buildings for the future. An ingeneous structural control system can be developed by separating the internal subframe in one or many modules from the external megaframe, thus taking advantage of the effect of tuned mass dampers without adding any aditional mass. This so called mega-subcontrol system is generally modeled by a 20DF system for parametric study and for finding optimal values of the parameters. In this study the equation of motion for the system is obtained frist and the preconditions for the simplified modeling are investigated. Finally the optimal value for the subsreucture strffness is fomputed with given mass and damping ratios and transfer functions for responses are abtained for white noise ground exitation to verify the effectiveness of the mega-subcontrol system.

  • PDF

Pressurization Characteristics of Piezoelectric-Hydraulic Pump Adopting a Ball-Thin Plate Spring Type Check Valve (볼-박판 스프링 형 체크밸브가 적용된 압전유압펌프의 가압 특성)

  • Hwang, Yong-Ha;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.7-14
    • /
    • 2018
  • In this study, a new check valve was studied to improve the load pressure of a brake system with a small piezoelectric-hydraulic pump. During the pressurization process, the steady-state pressure at the load is affected by the ratio of the cross-sectional area of the check valve the chamber pressure and load pressure. Since the flow path cover of the check valve is made wider than the cross-sectional area of the output flow to prevent backflow, a method of reducing the area ratio is proposed for a higher load pressure by mounting an additional mass to a thin plate spring type check valve. To identify the effect of mounting an additional mass to the existing check valve on the load pressure, a simple brake system with a small piezoelectric-hydraulic pump was modeled using a commercial code AMESim. The AMESim modeling was verified by comparing the simulation results with the experimental results of the pump the existing check valve. The additional mass was added to the verified AMESim modeling and higher load pressure was able to be obtained through simulation. The 35% performance improvement in load pressure identified by carrying out pressurization test of the brake system after adopting the new check valve the small piezoelectric-hydraulic pump.