• Title/Summary/Keyword: 부가필터

Search Result 178, Processing Time 0.028 seconds

Comparison of Image Quality and Effective Dose by Additional Filtration on Digital Chest Tomosynthesis (Digital Chest Tomosynthesis에서 부가필터에 따른 화질 및 유효선량)

  • Kim, Kye-Sun;Kim, Sungchul
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.347-353
    • /
    • 2015
  • The purpose of this study is to suggest proper additional filtration by comparisons patient dose and image quality among additional filters in digital chest tomosynthesis (DTS). We measured the effective dose, dose area product (DAP) by changing thickness of Cu, Al and Ni filter to compare image quality by CD curve and SNR, CNR. Cu, Al and Ni exposure dose were similar thickness 0.3 mm, 3 mm and 0.3 mm respectively. The exposure dose using filter was decreased average about 33.1% than non filter. The DAP value of 0.3 mm Ni were decreased 72.9% compared to non filter and the lowest dose among 3 filter. The effective dose of 0.3 mm Ni were decreased 48% compared to 0.102 mSv effective dose of non filter. At the result of comparison of image quality through CD curve there were similar aspect graph among Cu, Al and Ni. SNR was decreased average 19.07%, CNR was average decreased 18.17% using 3 filters. In conclusion, Ni filtration was considered to be most suitable when considered comprehensive thickness, character, sort of filter, dose reduction and image quality evaluation in DTS.

The Additional Filter and Ion Chamber Sensor Combination for Reducing Patient Dose in Digital Chest X-ray Projection (디지털 흉부엑스선 검사에서 환자선량 감소를 위한 부가필터와 Ion chamber 센서 조합)

  • Lee, Jinsoo;Kim, Changsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • In this paper, we studied additional filter and Ion chamber combinations to reduce patient dose without decreasing image quality in digital chest x-ray projection. The experiment set 125 kVp, 320 mA, AEC mode. Ion chamber sensors was divided by 4 cases of combinations, then, we measured patient dose and calculated organ dose using PCXMC. Also, physical image assessment using MTF was performed. As a results, The surface entrance dose and organ dose were the lowest when selecting both left and right Ion chamber sensors under the same conditions of additional filter. In image quality assessment, The spatial frequency scored 2.494 lp/mm which was highest when selecting both right and left Ion-chambers and 0.1 mmCu filter. And to conclude, to select both right and left Ion chamber sensors and 0.1 mmCu filter will help for acquiring good quality image as well as reducing patient dose.

Consideration of the X-ray Spectrum Change and Resolution According to Added Filters, SID, A-Si (CsITl) in the Imaging System (A-Si(CsITl) 영상시스템에서 부가필터, SID에 따른 X선 스펙트럼변화와 해상력에 대한 고찰)

  • An, Hyeon;Kim, Jung-Hoon;Lee, Dongyeon;Ko, Sungjin;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.681-688
    • /
    • 2016
  • This study assess their quality of radiation on analysis of the spectrum of resolution suggesting IEC 61267 in radiation quality that RQA3, RQA5, RQA7, RQA9 and combination of clinical condition using several quality of radiation. In experiments edge method first, the spatial resolution assessment used image of the additional filter and SID is obtained the IEC 62220-1, spatial resolution and sharpness of the obtained image was evaluated in the MTF value 10%(0.1), MTF value 50%(0.5) using a Matlab program. Second, MCNPX simulation used spatial resolution analysis was radiation quality particle fluence and spectrum analysis in energy. As a result, make use of additional filter, image quality evaluation of SID that RQA3 radiation quality combination qualification is higher spatial resolution and sharpness make unused of additional filter and SID 100cm. RQA7 radiation quality combination qualification is higher that spatial resolution make unused of additional filter and SID 150cm. RQA9 radiation quality combination qualification is higher that spatial resolution and sharpness make used of additional filter and SID 180cm. spectrum analysis of radiation quality by reducing consequent errors occurring in the experiment that error due to the reproducibility of the X-ray tube, occur in an error of correction the detector suggest ideal conditions from spectrum analysis through MCNPX simulation. In conclusion, by suggesting spatial resolution and sharpness of result for various radiation quality, It provide basic data that radiation quality condition and quantitative assessment method for laboratory in clinical using detector evaluation.

Study on Gonad Dose and Utility according to Use of Filters During the Defecography (배변조영촬영에 있어 필터사용에 따른 생식선량 및 유용성에 관한 연구)

  • Jung, Hong-Ryang;Kim, Ki-Jung;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.206-213
    • /
    • 2009
  • The study is to measure a variation of exposed dose on genital glands (ovary, testis) which are exposed to radiation during the defecography to diagnosis domain according to use of filters and to look into its utility. whose results are as follows: The measured values of dose were the left ovary 23.4mGy, the right ovary 7.5mGy, the testis 10.3mGy in case of not using filter at all, the left ovary 22.4mGy the right ovary 7.0mGy, the testis 9.5mGy in case of using an additional filter only, the left ovary 26.7mGy, the right ovary 8.4mGy, the testis 11.5mGy in case of using a defeco filter only and the left ovary 20.5mGy, the right ovary 6.2mGy, the testis 7.5mGy in case of using both an additional filter and a defeco filter, respectively. When comparing with the value in case of not using filter at all, the dose to the left ovary decreased by 10%, the dose to right ovary by 5% and the testis by 8% respectively in case of using an additional filter only. While the dose to the left ovary increased by 33%, the dose to right ovary by 9% and the testis by 12% respectively gonad a defeco filter only. And in case of using both an additional filter and a defeco filter, the dose to the left ovary decreased by 29%, the dose to right ovary by 13% and the testis by 28% respectively. In other words, the dose increased in case of using a defeco filter only while the dose decreased markedly on the rest conditions such as using an additional filter only, using a defeco filter only and using both an additional filter and a defeco filter.

Change of Dose Exposure and Improvement of Image Quality by Additional Filtration in Mammography (유방촬영용장치 부가필터에 따른 선량변화 및 화질개선)

  • Cho, Woo Il;Kim, Young Kuen;Lee, Gil Dong
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.2
    • /
    • pp.78-90
    • /
    • 2013
  • Recently, the interest on exposure to radiation is rising. The radiation exposure of mammography is higher in absorbed dose than of X-ray, therefore unnecessary exposure needs to be reduced, and higher image quality is needed. Generally, ray quality of the radiation imaging is an important factor that determines image quality and the amount of ray exposure, and they are affected by tube voltage and added filter. The X-ray energy that is exposed from mammography device is generally a continuous spectrum, which includes low energy that has minute influence on the image quality, and high energy that hinders contrast on image. Currently, molybdenum (Mo) and rhodium (Rh) are the most used added filters for mammography device, and they are used differently according to the energy region of X-ray. This study aims to find out the degree of reduction in exposure dose according to the thickness of aluminum (Al), and to study the changes in image quality and dose when the added filter plates that are made with niobium (Nb) or zirconium (Zr) are used, other than molybdenum (Mo) and rhodium (Rh), the two most used added filters that have similar atomic number and K-absorption regions as Nb and Zr. In this study, single-added filters of molybdenum (Mo), niobium (Nb), and zirconium (Zr) are used, and in some cases, Aluminum (Al) is combined with the single filters. In this case, image quality is considered to be improved depending on the type of added filters, and by using Aluminum (Al) filter together with the others, unnecessary X-ray of low energy would be absorbed, therefore the dose is expected to decrease without any influence when the concentration level becomes identical.

Image Quality Improvement through Energy Spectrum Change for X-ray (엑스선 에너지스펙트럼 변경을 통한 영상 화질 향상에 관한 연구)

  • Kim, Gu;Kim, Neung Gyun;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2021
  • When continuous X-ray are used when acquiring and X-ray image, even the same material may not be accurately represented in the image according to the thickness due to various X-ray energies. To solve this problem, the X-ray energy spectrum was changed to improve the image quality. Using SPEKTR v3.0, an X-ray energy spectrum with an additional filter added and a general X-ray energy spectrum using only a unique filter were obtained. Simulation was performed using the obtained X-ray energy spectrum as a radiation source for Geant4 Application for Tomographic Emission (GATE). Using GATE data, an X-ray image with an additional filter and an image reconstructed from and X-ray image without an additional filter were compared and analyzed through a mono energy image of 74 keV. In the case of using the X-ray energy spectrum without using an additional filter, the amount of X-rays transmitted according to the thickness of the same material is different from the amount that decreases according to the thickness of the material. Similar results were obtained as the amount decreased with the material thickness. In other words, a similar result was obtained when the reduced dose was used with a mono energy. When an X-ray image is obtained by changing an X-ray energy spectrum using an additional filter, a more accurate result of transmission of X-rays may be obtained. In radiological examination, it was confirmed that the appropriate use of the additional filter has a great effect on improving the image quality.

The Study of Affecting Image Quality according to forward Scattering Dose used Additional Filter in Diagnostic Imaging System (부가필터 사용 시 전방 산란선량에 따른 화질 영향에 대한 연구)

  • Choi, Il-Hong;Kim, Kyo-Tae;Heo, Ye-Ji;Park, Hyong-Hu;Kang, Sang-Sik;Noh, Si-Cheol;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.597-602
    • /
    • 2016
  • Recent clinical field utilizes the aluminium filter in order to reduce the low-energy photons. However, the usage of the filter can cause adverse effect on the image quality because of the scattered dose that is generated by X-ray hardening phenomenon. Further, usage of filter with improper thickness can be a reason of dose creep phenomenon where unnecessary exposure is generated towards the patient. In this study, the author evaluated the RMS and the RSD analysis in order to have a quantitative evaluation for the effect of forward scattering dose by the filter on the image. as a result of the study, the FSR and the RSD was increased together with the increasing of thickness of the filter. In this study the RSD means the standard deviation of the mean value is relatively size. It can be understood that the signal-to-noise ratio decreases when the average value is taken as a signal and the standard deviation is judged as a noise. The signal-to-noise ratio can understanding as index of resolution at image. Based on these findings, it was quantitatively verified that there is a correlation of the image quality with the FSR by using an additional filter. The results, a 2.5 mmAl which is as recommended by NCRP in the tube voltage of 70 kVp or more showed the 14.6% on the RSD when the filter was not in used. these results are considered able to be utilized as basic data for the study about the filter to improve the quality of the image.

Application of ALF for Stereoscopic Video Coding (스테레오스코픽 비디오 부호화를 위한 적응루프필터 적용기법)

  • Lee, Byung-Tak;Kim, Jae-Gon;Lee, BongHo;Yun, Kugjin;Cheong, Won-Sik;Hur, Namho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.378-380
    • /
    • 2011
  • 스테레오스코픽(stereoscopic) 3D 비디오 서비스는 기존 2D 와의 호환성을 유지하면서 새로운 3D 비디오 서비스를 제공할 수 있는 것으로, 전송 대역이 제한된 지상파 방송에서 높은 부호화 효율을 갖는 스테레오스코픽 비디오 코덱이 요구된다. 따라서 3D 를 위한 부가영상의 부호화를 위해 H.264/AVC 등을 고려하고 있으며, 또한 부가영상을 비실시간으로 전송하는 비실시간(Non-Real Time: NRT) 3D 서비스도 고려되고 있다. 본 논문에서는 NRT 3D 서비스를 위한 스테레오스코픽 비디오 부호화에 있어서, HEVC 에서 고려중인 적응루프필터(ALF: Adaptive Loop Filter)를 전/후처리 필터로 적용하는 기법을 제시한다. 특히, 부가영상의 후처리에 ALF 를 적용하기 위하여 부호화 과정에 결정되는 CU(Coding Unit) 구조를 이용하는 HEVC 와 달리 H.264/MVC 로 부호화한 부가영상의 매크로블록(MB) 부호화 모드를 이용한 ALF 적용 기법을 제안한다. 부가영상 부호화에 있어서 전처리 및 후처리 과정으로 ALF 를 적용함으로써 최대 약 20.5%의 부가영상의 부호화 성능 향상을 확인하였다.

  • PDF

Assessment of Effective Dose by using additional Filters in Dental Radiography: PC-Based Monte Carlo Program Analysis Subjected on Intraoral Radiography (치과 방사선 촬영의 부가 필터 사용에 따른 유효선량 평가: 구내 촬영에 대한 PC-Based Monte Carlo Program 분석)

  • Kwak, Jong Hyeok;Kim, A Yeon;Kim, Gyeong Rip;Cho, Hee Jung;Moon, Sung Jin;Kil, Sang Hyeong;Lee, Jong Kyu
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.491-498
    • /
    • 2021
  • In this study, the effective dose was measured using the PCXMC v2.0 program by examining the conditions used to set the diagnostic reference level for intraoral imaging recommended by the government, and the effect of the Al additive filter was confirmed. In oral imaging, the largest effective dose was calculated from the oral mucosa among 11 organs. The effect of the Al additive filter showed an excellent radiation reduction effect at 2mm rather than 1mm. In the case of children aged 5 years, the overall effective dose was calculated to be high in all 11 organs because they are more sensitive to radiation than adults. And as a result of evaluating the image quality according to the use of an additional filter during intraoral imaging, there was no significant difference in SNR and CNR changes compared to before the additional filter was used. Based on this study, it is thought that additional filter settings can be recommended for intraoral imaging.

Dose and Image Quality Analysis According to The Type of Composite Additional Filter (복합 부가필터 종류에 따른 선량 및 화질 분석)

  • Myoung, Noh-Beom;Im, So-Yeon;Yoo, Se-Jong;Kim, Seong-Ho;Jeon, Min-Cheol
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.147-154
    • /
    • 2020
  • In this study, four types of composite added filtration (aluminum, nickel, copper, and zinc) were combined for each thickness to evaluate dose reduction and optimal images due to X-ray attenuation. To evaluate dose and image quality. X-ray generators, Dose Area Product(DAP) and ICY programs with RQR9 standard quality were used. In the image quality evaluation element (PSNR, RMSE, SSIM), only images with PSNR value of 30 dB or more were analyzed. As a result, the best combination in dose evaluation was 3 mmAl + 0.6 mmNi (0.16µGy㎡), and the best filter in image quality evaluation was 0.9 mmAl (PSNR 34.24dB, RMSE 79.52, SSIM 0.24). In this study, the dose aspect and the image quality aspect are mentioned, So it is considered that further studies on patient's exposure dose and optimal image will be needed in the future.