• Title/Summary/Keyword: 볼-스크류

Search Result 86, Processing Time 0.021 seconds

Precise Control of Dynamic Friction Using SMC and Nonlinear Observer (SMC와 비선형관측기를 이용한 동적마찰에 대한 정밀추종제어)

  • Han, Seong-Ik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.692-697
    • /
    • 2001
  • A precise tracking control scheme on the system in presence of nonlinear dynamic friction is proposed. In this control scheme, the standard SMC is combined with the nonlinear observer to estimate the dynamic friction state that is impossible to measure. Then this control scheme has the good tracking performance and the robustness to parameter variation compared with the standard SMC and the PiD based nonlinear observer control system. This fact is proved by the experiment on the ball-screw driven servo system with the dynamic friction model.

  • PDF

Position Control of Ball-Screw Systems with Compensation of Estimated Coulomb Friction (추정된 쿨롱 마찰을 보상한 볼-스크류 시스템의 위치제어)

  • Kim, Han-Me;Choi, Jeong-Ju;Lee, Young-Jin;Kim, Jong-Shik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.893-898
    • /
    • 2003
  • Coulomb friction is an important factor for precise position tracking control systems. The control systems with friction causes the steady state error because of being sensitive to the change of system condition and highly nonlinear characteristics. To overcome these problems, we use an estimation scheme of Coulomb friction to experiment for it's compensating. The estimated factor for Coulomb friction is used as a feed-forward compensator to improve the tracking performance of ball-screw systems. The tracking performance was improved by compensating the estimated friction torque in the feed-forward term. And, the sliding mode control which is derived from the Lyapunov stability theorem is applied for robust stability and reducing chattering. The experimental results show that the sliding mode controller with adaptive friction compensator has a good tracking performance compared with the friction uncompensated controller.

  • PDF

A Study on Control of the Thermal Expansion for Ball Screw of CNC Machin Tools (CNC 공작기계용 볼스크류의 열팽창 억제에 관한 연구)

  • 전언찬
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.73-78
    • /
    • 1998
  • In this paper, we have studied about the thermal expansion of the ball screw used for the CNC machine tools. The hollow ball type is used for the ball screw. We have compared the conventional cooling system and function with the improved cooling system and function which is developed the path providing cooling oil in hollow ball screw. That is the temperature variation and positioning accuracy are analyzed of the ball screw. We have obtained the following results through this experiment. 1) The improved cooling system of the hollow ball screw for CNC machine tools was developed 2) The improved cooling system of the hollow ball screw has a large effectiveness on restraining the thermal expansion of the ball screw. 3) The positioning accuracy of the ball screw was improved about 2~4$\mu$m using temperature -controlled cooling oil.

The Characteristics of High Speed Feed Drive System using High Lean Screw (High Lead Ball Screw를 사용한 고속이송계의 특성)

  • 고해주;박성호;정윤교
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.97-103
    • /
    • 2001
  • The study on the high-speed machine tool is very important for the improvement of productivity since it can shortens cutting and non-cutting time. Especially, high speed of feed drive system is the major research field. In the industries of the advanced countries, the feed drive systems at the speed of 60 m/min have been already developed based on the high lead ball screws. In this study, a high speed feed drive system at the speed of 60 m/ min has been developed, and its movements characteris-tics are investigated. As the movement characteristics, positioning accuracy, angular accuracy, straightness and micro step-response are measured. Thermal characteristics of the system is also discussed. For measuring the movement characteris-tics, a laser interferometer, a memory-based Hi-coder and a cooling device are used. The experimental results confirm that the movement characteristics and the thermal behavior of the system are satisfactory in the aspect of accuracy and stability.

  • PDF

Vibration Analysis of Inspection Equipment for a Semiconductor (반도체 검사 장비의 진동 분석)

  • Rim, Kyung-Hwa;An, Chae-Hun;Oh, Jung-Bae;Lee, Hyouk;Roh, Joon-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.569-574
    • /
    • 2008
  • Nowadays, the equipment for a semiconductor process is required to raise accuracy and productivity. Therefore, the natural frequency of the equipment has been lowered because it has been precise, rapid, large, and light. In order to improve the efficiency of production, it is necessary for the equipment to increase the operation speed, which causes inevitable vibration problems. In this paper, influence analysis of ball-screw in the equipment and evaluation method for the vibration on the base are presented based on the analyses of dynamic characteristics for the mechanical structure through the modal test.

  • PDF

Improvement of Microstep Characteristics in Hydrostatic Table with Ballscrew (볼스크류로 구동되는 유정압테이블의 미소이송특성 향상)

  • 황주호;박천홍;이찬홍;이후상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.94-100
    • /
    • 1998
  • Microstep characteristics largely depends on the variation of friction force induced by the geometric accuracy of ballscrew, guide rail and the control characteristics of servo unit. In this paper, for improving the microstep characteristics of hydrostatic table with ballscrew, microstep resolution according to the control mode of servo amplifier and response characteristic by the variation of integral gain are tested and compared. Relationship between micro motion behavior of hydrostatic table and the output torque is also tested for acquiring the effective variables on control characteristics. From the results. it is confirmed that the torque control mode has a advantage in microstep resolution, and more stable than velocity control mode in low feed rate, and by the increase of integral gain in the elastic motion realm, response characteristics can be improved.

  • PDF

A Study on Characteristics of Feed Drive System using High Speed Ballscrew (고속볼스크류를 사용한 이송계 특성에 관한 연구)

  • 박성호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.279-284
    • /
    • 2000
  • It can be acquired the high effective productivity through of high speed, precision of machine tools, and then, machine tools will be got a competitive power. Industrially advanced countries already developed that the high speed feed is 60m/min using the high speed ball screw. Also, a lot of problems have happened the feed drive system. It is necessary to study about the character of positioning accuracy, heat generation and high speed control for feed drive system of high speed. in this study, we make use of the feed drive system with a high lead ball screw. We'll develop the feed drive system at the speed of 60m/min. Using the design of the mechanical element and the high speed control, the basic design concept can be established. After manufacturing one-shaft feed drive system and then conducting the performance test, It'll be analyzed properties of the high speed feed drive system.

  • PDF

Position Control of Servo Systems Using Feed-Forward Friction Compensation (피드포워드 마찰 보상을 이용한 서보 시스템의 위치 제어)

  • Park, Min-Gyu;Kim, Han-Me;Shin, Jong-Min;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.508-513
    • /
    • 2009
  • Friction is an important factor for precise position tracking control of servo systems. Servo systems with highly nonlinear friction are sensitive to the variation of operating condition. To overcome this problem, we use the LuGre friction model which can consider dynamic characteristics of friction. The LuGre friction model is used as a feed-forward compensator to improve tracking performance of servo systems. The parameters of the LuGre friction model are identified through experiments. The experimental result shows that the tracking performance of servo systems with higherly nonlinear friction can be improved by using feed-forward friction compensation.

Thermal Analysis of Electromagnet for SMART Control Element Drive Mechanism (SMART용 볼너트-스크류형 제어봉구동장치에 장착되는 전자석의 열해석)

  • Huh, Hyung;Kim, Ji-Ho;Kim, Jong-In
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.98-100
    • /
    • 1999
  • A thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the thermal analysis of the electromagnet was developed and theoretical bases for the model were established. It is important that the temperature of the electromagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The thermal properties obtained here will be used as input for the optimization analysis of the electromagnet.

  • PDF

Thermal Expansion Analysis of the Ball Screw System by Finite Difference Methods (유한차분법을 이용한 볼스크류 시스템의 열팽창 해석)

  • Jeong, Seong-Jong;Park, Jeong-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.44-57
    • /
    • 1992
  • Ball screw systems have been used for positioning elements of machine tools and precision tables. In order to maintain the high rigidity and accuracy, a certain amount of preload is applied between the nut and the screw of ball screw systems. However, large amount of the preload oncreases the frictional heat. The temperature rises remarkably at the high speed motion, and the thermal expansion degrades the positioning accuracy. In this paper, a finite difference method is applied to analyse temperature distributions and thermal expansions of the ball screw system according to preload conditions and rotational speeds. Some simulation results show that the developed methodology is appropriate to study the thermal expansion characteristics of ball screw systems.

  • PDF