• Title/Summary/Keyword: 복합 폴리머

Search Result 474, Processing Time 0.024 seconds

Acoustic Properties of Ultrasonic Transducers using Polymer/PZT piezomposites (Polymer/PZT 복합재료를 이용한 초음파 트랜스듀서의 음향특성)

  • Hong Jung-Pyo;Ryu Jung-Tak;Kim Yeon-Bo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.353-356
    • /
    • 2004
  • 단일 PZT보다 전기적 및 음향 특성비 우수한 Polymer/PZT 압전복합재료를 설계하고, 이것으로 초음과 트랜스듀서를 제작하여 음향특성을 고찰하였다. 폴리머의 체적 수축율 조정을 위한 충진제를 선정하고, PZT의 부피분율출 $30\~80\%$ 변화시켜 이것에 따른 전기적 특성 및 음향 특성을 비교, 검토하였다. PZT/Polymer 압전복합재료의 전기기계결합계수$(=k_{t})$는 단일 PZT 보다 우수하게 나타났으며, 음향 임피던스는 $3\~7[Mrayl]$ 정도로 낮게 조정할 수 있었다. 또한 Pulse-echo법으로 음향 송수신특성을 측정한 길과, 단일의 PZT를 사용한 경우보다 높은 진폭과 넓은 대역폭이 측정되어 음향 특성이 우수한 것을 확인 할 수 있었다.

  • PDF

Fabrication and Straining Model of a CNT/EAP Composite Film (카본나노튜브/도전성폴리머(CNT/EAP) 복합재 필름의 제조 및 특성분석)

  • Zhang, Shuai;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • The relationship between strain and applied potential was derived for composite actuators consisting single-wall carbon nanotubes (SWNTs) and conductive polymers (CPs). During deriving the relationship, an electrochemical ionic approach is utilized to formulate the electromechanical actuation of the composite film actuator. The results show that the well-aligned SWNTs composite actuator can give good actuation responses and high actuating forces available. The actuation is found to be affected by both SWNTs and CPs components and the actuation of SWNTs component has two kinds of influences on that of the CPs component: reinforcement at the positive voltage and abatement at the negative voltage. CNT/EAP was fabricated successfully using the chemical polymerization method.

  • PDF

An Experimental Study on the Durability Evaluation of Polymer Cement Restoration Materials for Deteriorated Reinforced Concrete Structures (성능저하된 철근콘크리트구조물 폴리머시멘트계 보수용 단면복구재의 내구성 평가에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Jae-Hwan;Cho, Bong-Suk;Park, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • The duties of the restorative materials are to bear up against stress and to protect reinforcement corrosion. So the restorative materials are estimated by various kinds of strength, permeability and etc, But, in case of existing performance evaluation of restorative materials, because various deterioration factors are separately acted, the system of performance evaluation is different from that of combined deterioration of real structure and it is difficult to evaluate the exact performance of restorative materials. In this study, to evaluate Performance of restorative materials, we compare their korea standard properties in terms of compressive and bending strength and permeability of water and air with real durability for carbonation, salt damage and actual reinforcement corrosion like ratio of corrosion area. weight reduction and corrosion velocity of steel bar under environment of combined deterioration. The results showed that strength and permeability of restorative materials are similar but their resistance to carbonation, salt damage and actual reinforcement corrosion are very different.

Effects of pre-curing process on improvement of the compressive strength of IGCC-slag-based-geopolymer (IGCC 용융 슬래그로 제조된 지오폴리머의 강도증진에 Pre-curing이 미치는 영향)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.295-302
    • /
    • 2017
  • In this study, the effect of pre-curing process on the enhancement of mechanical properties of IGCC-slag-based-geopolymer was studied. Pre-curing is a process in which the green geopolymer is left at room temperature for a certain period of time prior to the high-temperature curing, and it is known as increasing the strength of a specimen. Therefore, in this experiment, the compressive strength of the geopolymers was measured according to various pre-curing conditions, and microstructure and crystal phase changes were observed by SEM and XRD, respectively. The W/S ratio was determined to be 0.26, which can offer the maximum geopolymer strength with easy molding ability, and the concentration of the alkali solution was 15 M. Pre-curing was performed at room temperature for 0 to 27 days. Compressive strength of the geopolymer made with pre-curing process increased by 36~87 % compared with the specimens made with no pre-curing process. Those improved compressive strength for the pre-cured geopolymer was confirmed owing to promotion effect of pre-curing process on generation of C-S-H gel and zeolite phases, which were analyzed using by XRD and SEM measurement.

A Study on the Mechanical Properties of Carbon Fiber Reinforced Cement Composite Impregnated in Polymer (폴리머 함침 탄소섬유보강 시멘트 복합체의 역학적 특성에 관한 연구)

  • ;;Lee, Burtrand. I.
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.107-118
    • /
    • 1992
  • In order to examine the mechanical properties of carbon fiber reinforced cement composites with silica powder PAN - based carbon fiber and Pitch- based carbon fiber, and polymer impregnators experimental studies on CFRC impregnated in polymer were carried out. The effects of types, length, and content~i of carbon fibers and matrices of fresh and hardened CFRC impregnated in polymer were examined. The test results show that compressive, tensile, and flexural strength of CFRC impregnated in polymer were much more iriCreased than those of air cured and autodaved CFIIC CFRC impregnated in polymer was also considerably effective in improving toughness, freeze thaw resistance, loss of shrinkage, and creep resist ance, compared with air cured and autoclaved CFRC.

Physical Properties of Polymer Concrete Composite Using Rapid-Cooled Steel Slag (I) (Use of Rapid-Cooled Steel Slag in Replacement of Fine Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(I) (잔골재를 급냉 제강슬래그로 대체 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.210-216
    • /
    • 2012
  • For the recycling of rapid-cooled steel slag, various specimens were prepared with the various replacement ratios of the rapid-cooled steel slag and the addition ratios of polymer binders. The physical properties of these specimens were then investigated by absorption test, compressive strength test, flexural strength test and hot water resistance test, and the pore and the micro-structure analysis was performed using scanning electron microscope. Results showed that the flexural strength increased with the increase of rapid-cooled steel slag and polymer binder, but the compressive strength showed a maximum strength at a certain proportion. By the hot water resistance test, compressive strength and flexural strength decreased remarkably and the total pore volume increased but the pore diameter decreased. SEM observation of the structure before the hot water resistance test revealed a very compact infusion of structure but the decomposition or thermal degradation appeared in polymer binders when observed after the hot water resistance test.

A Study on the Preparation of the Exfoliated Polyimide Nanocomposite and Its Characterization (박리형 폴리이미드 나노복합재료 제조와 특성에 관한 연구)

  • 유성구;박대연;김영식;이영철;서길수
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.375-380
    • /
    • 2002
  • Diamines (p-phenylenediamine , m-phenylenediamine , and n-hexamethylenediamine) were intercalated into sodium montmorillonite for the further reaction with the anhydride end groups of polyamic acid. The anhydride terminated polyamic acid was synthesized using a mole ratio of 4,4'-oxydianilline : 1,2,4,5-benzene tetracarboxylic dianhydride = 1.50 : 1.53. The modified montmorillonite was reacted with polyamic acid terminated with anhydride group in N-methyl-2-pyrrolidone (polyamic acid/clay nanocomposite). After imidization, thin films of the polyimide/clay nanocomposite were prepared. From the results of XRD and TEM, we found that mono layered silicates were dispersed in polyimide matrix and those resultants were exfoliated nanocomposites. Mechanical properties of exfoliated polyimide nanocomposite were better than both those of pure polyimide and those of intercalated polyimide nanocomposite.

Synthesis of Polyurethane Nanocomposite Filled Inorganic Particles and Their Properties (무기입자를 충전한 폴리우레탄 나노복합체의 합성 및 물성)

  • Son, Bok-Gi;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.379-384
    • /
    • 2007
  • The nanocomposites with inorganic nano powder, improved thermal stability, were prepared by urethane polymerization. The structure and surface properties of the nanocomposites were determined by X-ray diffraction and FT-IR, respectively. The thermal stabilities were studied using TGA and DSC. Their morphologies and mechanical properties were observed by SEM and UTM. As a result, the nanocomposites with MMT led to the increase of the silicate layers. The distance between layers of the nanacomposites with MMT was increased by $7.5{\AA}$ and the new peaks at $1038cm^{-1}$ were shown in the presence of the Si-O groups on the silica. The thermal stabilities of the nanocomposites were higher than those of pore polyurethane matrix. The nanocomposites had higher in mechanical properties than the pure polyurethane matrix.

Preparation of Graphene/Polybenzoxazine Conductive Composite Thin Film through Thermal Treatment (열 처리를 통한 그래핀/폴리벤족사진 전도성 복합 박막 제조)

  • Ko, Young Soo;Cha, Ji-Jung;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.513-517
    • /
    • 2013
  • A novel conductive composite thin film was prepared for the first time by hybridization between polybenzoxazine (PBZ) having high heat resistance property and conductive graphene. Mechanically robust conductive graphene/PBZ composite thin films could effectively be prepared by a simple thermal treatment, which simultaneously induces reduction of graphene oxide (GO) and crosslinking reaction of benzoxazine monomer. Graphene sheets seem to be uniformly dispersed up to 3 wt% graphene content in the composite thin film as shown in the results of chemical/crystal structural and morphological analyses. This efficient route for making graphene/PBZ composite thin film would provide simultaneous improvement of mechanical property as well as electrical conductivity.

Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Waterborne Polyurethane/Montmorillonite Nanocomposite Nanofibers (전기방사법을 이용한 폴리(비닐 알코올)/수분산 폴리우레탄/몬모릴로나이트 나노복합섬유의 제조 및 특성분석)

  • Kim, In-Kyo;Yeum, Jeong-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.553-557
    • /
    • 2011
  • Poly(vinyl alcohol) (PVA)/waterborne polyurethane (WBPU)/montmorillonite clay (MMT) nanocomposite nanofibers were prepared using electrospinning technique of aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and thermal gravimetric analyzer were used to characterize the morphology and properties of the nanocomposite nanofibers. Since PVA, WBPU and MMT are hydrophilic, non-toxic and biocompatible materials, these nanocomposite nanofibers can be used for filter and medical industries as wound dressing materials, antimicrobial filters, etc.