• Title/Summary/Keyword: 복합 유성기어

Search Result 13, Processing Time 0.017 seconds

A Study on the Improvement of Transmission Error and Tooth Load Distribution using Micro-geometry of Compound Planetary Gear Reducer for Tractor Final Driving Shaft (트랙터 최종구동축용 복합유성기어 방식 감속기의 Micro-geometry를 이용한 전달 오차 및 치면 하중 분포 개선에 관한 연구)

  • Lee, Nam Gyu;Kim, Yong Joo;Kim, Wan Soo;Kim, Yeon Soo;Kim, Taek Jin;Baek, Seung Min;Choi, Yong;Kim, Young Keun;Choi, Il Su
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • This study was to develop a simulation model of a compound planetary gear reducer for the final driving shaft using a gear analysis software (KISSsoft, Version 2017, KISSsoft AG, Switzerland). The aim of this study is to analyze transmission error and the tooth load distribution through micro-geometry using the simulation model. The tip and root relief were modified with Micro-geometry in the profile direction, and crowning was modified with Micro-geometry in the lead direction. The transmission error was analyzed using the PPTE (Peak to Peak Transmission Error) value, and the tooth load distribution was analyzed for the concentrated stress on the tooth surface. As a result of modifying tip and relief in the profile direction, the transmission error was reduced up to 40.7%. In the case of modifying crowning in the lead direction, the tooth load was more evenly distributed than before and decreased the stress on the tooth surface. After modifying the profile direction for the 1st and 2nd planetary gear train, the bending and contact safety factors were increased by 31.7% and 17%, and 18.3% and 12.5% respectively. Moreover, the bending and safety factors after modifying lead direction were increased by 59.5% and 32.7%, respectively for the 1st planetary gear train, and 59.6% and 43.6%, respectively for the 2nd planetary gear train. In future studies, the optimal design of a compound planetary gear reducer for the final driving shaft is needed considering both the transmission error and tooth load distribution.

Analysis of dual-mode hybrid by using mode change parameter (모드 전환 상수를 이용한 듀얼 모드 하이브리드 해석 방법)

  • Kim, Nam-Wook;Yang, Ho-Rim;Ahn, Kuk-Hyun;Cho, Sung-Tae;Park, Yoeng-Il;Lee, Jang-Moo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.539-542
    • /
    • 2006
  • Many researches about next generation vehicles are trending toward HEV which has better fuel economy than an internal-combustion engine. But existing HEV has some defects at specific running states(eg. highway running It is possible that dual-mode hybrid system overcomes that defects. Mode change parameter, ${\gamma}$ helps to analyse the mode changing of dual mode hybrid and is applied at a numerical analysis on testing the performance. There is an additional constraint when vehicles drive on engine mode. No power assistance of battery applies on engine mode. Because vehicles must be sustained by only engine power while vehicle drives on constant speed mode. At the conclusion of this paper, graphs show the ability of motors that satisfy the equilibrium of the lever system. Designers can roughly determine capacities of the motors, parameters of the lever system by this analysing method.

  • PDF

Design of the Hydro-Mechanical Transmission for a 55kW-Class Agricultural Tractor (55kW급 농업용 트랙터 정유압 기계식 변속기 설계)

  • Baek, Seung Min;Kim, Wan Soo;Kim, Yeon Soo;Baek, Seung Yun;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.19-27
    • /
    • 2020
  • The purpose of this study was to suggest design criteria for the HMT (hydro-mechanical transmission) of a 55 kW-class agricultural tractor, develop a simulation model, and evaluate its performance such as axle rotational speed, tractor speed, and power transmission efficiency. In this study, the HMT comprised a compound planetary gear and a HSU (hydro-static unit), and the compound planetary gear comprised two planetary gear sets. The HMT has three gear stages, and the maximum tractor speed was selected as 40 km/h. The simulation time was set at 2736 hours considering the lifetime of the tractor, and the simulation was performed for each gear stage at the engine-rated power conditions. As a result of the simulation, the axle rotational speeds for each gear stage were 39, 77, and 158 rpm, respectively. The range of tractor speed for each gear stage were 1.05-10.22 km/h, 10.74-20.17 km/h, and 20.70-41.40 km/h, respectively. The APE (absolute percentage gear) for the tractor's maximum speed between target value and simulation results were 2.20%, 0.85%, and 3.50%, respectively. Also, the power transmission efficiency for each gear stage were 0-75%, 72-81%, and 69-81%, respectively. The simulation results for the power transmission efficiency of the HMT were similar with the results of the previous research. This was a basic study on the development of the HMT for an agricultural tractor. In future studies, it is necessary to develop a tractor platform and evaluate the performance. The comparison between the simulation model and the HMT tractor should be performed.