• Title/Summary/Keyword: 복합 열전달

Search Result 163, Processing Time 0.027 seconds

Rib-Dimple Compound Cooling Techniques in a Gas Turbine Blade Cooling Channels with an Aspect ratio (4:1) (4:1 종횡비를 갖는 가스터빈 블레이드 냉각 유로에서의 립-딤플 복합 냉각 특성 연구)

  • Choi, Yong-Duck;Kim, Seok-Beom;Lee, Yong-Jin;Kim, Jin-Kon;Kwak, Jae-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.32-38
    • /
    • 2010
  • Heat transfer coefficients in a dimpled channel, a ribbed channel, and a rip-dimple compound channel were measured by the transient liquid crystal technique. The channel aspect ratio, the rib height, the rip pitch, and the rib angle were 4:1, 6 mm, 60 mm and $60^{\circ}$, respectively. The dimple diameter and the center-to-center distance were 6mm and 7.2 mm, respectively, and the Reynolds number range was 30,000-50,000. Results showed that the heat transfer coefficients were increased by the angled rib. For the dimple-rib compound cooling cases, the heat transfer coefficients were further augmented and the thermal performance factor for the case was the highest.

Experimental Investigation of the Combined Effects of Heat Exchanger Geometries on Nucleate Pool Boiling Heat Transfer in a Scaled IRWST (열교환기 형상이 축소한 IRWST 내부의 풀핵비등에 미치는 복합적인 영향에 대한 실험적 연구)

  • Kang, Myeong-Gie;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • In an effort to determine the combined effects of major parameters of heat exchanger tubes on the nucleate pool boiling heat transfer in the scaled in-containment refueling water storage tank (IRWST), a total of 1,966 data for q'quot; versus ${\Delta}T$ has been obtained using various combinations of tube diameters, surface roughness, and tube orientations. The experimental results show that (1) increased surface roughness enhances heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e.,enhanced heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e., enhanced heat transfer due to liquid agitation by bubbles generated and reduced heat transfer by the formation of large vapor slugs and bubble coalescence are different in two regions of low heat fluxes (q'quot; $\leq$50kW/$m^2)$ and high heat fluxes (q'quot; $\geq$50kW/$m^2)$ depending on the orientation of tubes and the degree of surface roughness, and (3) the heat transfer rate decreases as the tube diameter is increased for both horizontal and vertical tubes, but the effect of tube diameter on the nucleate pool boiling heat transfer for vertical tubes is greater than that for horizontal tubes. Two empirical heat transfer correlations for q'quot;, one for horizontal tubes and the other for vertical tubes, are obtained in terms of surface roughness $({\varepsilon})$ and tube diameter (D). In addition, a simple empirical correlation for nucleate pool boiling heat transfer coefficient $(h_b)$ is obtained as a function of heat flux (q'quot;) only.ucleate pool boiling heat transfer coefficient $(h_b)$ is obtained as a function of heat flux (q'quot;) only.

  • PDF

Natural Convection Heat Transfer of an Inclined Helical Coil in a Duct (기울어진 덕트 내 헬리컬 코일의 자연대류 열전달)

  • Park, Joo-Hyun;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.13-20
    • /
    • 2014
  • The natural convection heat transfers of a helical coil in a duct were measured experimentally varying the inclination. To achieve high Rayleigh number, mass transfer experiments instead of heat transfer experiments were performed based upon the analogy. The $Ra_D$ was fixed to $4.55{\times}10^6$. The turn numbers were 1~10. the pitch to diameter ratio were 1.3~5, and the inclination of the helical coil $0^{\circ}{\sim}90^{\circ}$. The measured $Nu_D$ for a single turn of the helical coil was very close to that from McAdams heat transfer correlation for a horizontal cylinder. The heat transfers of the helical coil were varied by the pith, number of turns, and duct height in a complex manner showing the velocity, chimney, and pre-heating effects. The results of the study contributes to the phenomenological analyses of the natural convection heat transfer of a compact heat exchanger.

Flow analysis of non-isothermal three dimensional filling phase in injection molding and its application (사출성형에서의 비등온, 3차원 유동해서과 그 응용)

  • 김대업;정근섭;이귀영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 1993
  • 사출성형 문제는 열전달과 유체유동이 복합된 문제라고 할수 있다. 사출성형 공정은 충진(filling), 보압(packing) 및 냉각과정(cooling phase)으로 이루어 진다. 충진과정은 높은 점성의 Non-Newtonian유체가 몰드내의 캐버티로 사출됨으로써 이루어지며 플라스틱의 점성도는 플라스틱의 온도 및 유동속도와 관련이 크며 이 flow-rate는 점도와 더불어 변화한다. CAE 유동해석 프로그램은 유체의 흐름과 열전달을 이용하여 충진과정을 이해하는데 이용되고 있다. 본 고에서는 사출성형 과정 중 충진과정에 대한 컴퓨터 시뮬레이션과 그 적용사례에 대하여 살펴본다.

  • PDF

An Analysis of Thermal Conductivity of Ceramic Fibrous Insulator by Modeling & Simulation Method I (모델링/시뮬레이션 기법을 이용한 세라믹 섬유 단열재의 열전도도 해석 I)

  • Kang, Hyung;Baek, Yong-Kee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.83-95
    • /
    • 2002
  • Thermal conductivity of ceramic fibrous insulator was analysed and predicted by using the modeling/simulation technique. Ceramic fibrous insulators are widely used as high temperature insulator on account of their lightweight mass and heat resisting properties. Especially it is suitable to protect the high speed aircraft and missiles from severe aero-thermodynamic heating. Thermal conductivity of ceramic fibrous insulator could be determined from the conductive heat transfer and the radiative heat transfer through the insulator. In order to estimate conductive thermal conductivity, homogenization technique was applied, while radiative thermal conductivity was computed by means of random number and radiation probability. Particularly radiation probability can make it possible to estimate the conductivity of fibrous insulator without any experimental constant. The calculated conductivity predicted in the present study have a reasonable accuracy with an average error of 7 percent to experimental data.

Numerical Analysis of Heat Transfer and Flow Characteristics on Squealer Tip of Gas Turbine Blade (가스터빈 블레이드 팁의 열전달과 유동 특성에 대한 수치적 해석)

  • Jiao, Liu;Kang, Youngseok;Kim, Donghwa;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1062-1070
    • /
    • 2016
  • The heat transfer and flow characteristics of gas turbine blade tip were investigated in this paper by using the conjugate heat transfer analysis. The rotor inlet boundary condition profile which was taken from the first stage nozzle outlet was used to analyse. The profile contained the velocity and temperature information. This study presents the influence of tip clearance about aerodynamic loss, heat transfer coefficient and film cooling effectiveness with the squealer tip designed blade model which tip clearance variation range from 1% to 2.5% of span. Results showed that the aerodynamic loss and the heat transfer coefficient were increased when the tip clearance was increased. Especially when the tip clearance was 2% of the span, the average heat transfer coefficient on the tip region was increased obviously. The film cooling effectiveness of tip region was increasing with decreasing of the tip clearance. There was high film cooling effectiveness at cavity and near tip hole region.

기능성 복합재의 경량 전자장비 하우징 검증시험

  • Lee, Ju-Hun;Jang, Tae-Seong;Sim, Eun-Seop
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.192.2-192.2
    • /
    • 2012
  • 위성시스템 소형화, 탑재체 수용증대, 발사비용절감, 탐사임무 효율화 등의 요구로 인하여, 위성 설계에 있어 경량화는 오랜 기간 진행되어온 연구 주제였다. 이러한 연구결과로서, 위성 구조체를 복합재료로 대신하기 위한 구조 경량화 연구와 적용이 성과를 거두었으며, 현재 위성체 프레임이나 전개형 안테나, 광학구조물 등에 경량 탄소섬유 강화 복합재료의 적용은 보편화되어 있다. 한편, 위성시스템에서 전력, 통신, 명령/데이터처리, 자세제어 및 관측기기의 각종 전자장비를 보호하는 하우징 구조물에는 여전히 금속재료가 광범하게 적용되고 있다. 특히, 알루미늄 합금은 하우징 재료로 널리 사용되는데, 강도, 강성, 열전달, 우주방사, 전기전도도 및 EMI 차폐특성과 더불어 가공성이 우수하다는 장점을 지닌 반면에, 금속재료로서 중량이 상당하여 위성 경량화 관점에서는 한계를 갖게 하는 단점이 있다. 전자장비에 부여된 전자기능 측면에서 보면, 하우징은 기생 구조물로서, 경량으로 제공될수록 전자장비 전체 무게에서 전자유닛만의 무게가 차지하는 전기전자기능비가 향상되고 위성 경량화에 크게 기여할 수 있다. 구조 경량화를 위하여 전자장비 하우징을 경량 복합재로 대체하여 설계 및 제작하였으며, 복합재 하우징의 강도, 강성, 열전달, 우주방사, 전기전도도 및 EMI 차폐를 검증할 수 있는 방법에 대하여 검토하였다.

  • PDF

A Numerical Study On Thermal Characteristics of HALE UAV Solar Arrays (HALE 무인기의 태양전지 열특성에 관한 해석적 연구)

  • Song, Ji-Han;Nam, Yoonkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, a numerical analysis is made of the fluid flow and heat transfer characteristics in the solar arrays of HALE (High Altitude Lond Endurance) UAV. In the stratosphere where UAV operates, high level solar radiation is induced, heat transfer decreases due to natural convection and forced convection is dominated by ambient flow. In order to predict the solar array temperature range in this environment condition, the conjugate heat transfer analysis was carried out for the solar arrays on the main wing. The investigation focused on the temperature distribution of solar array and heat transfer characteristics according to influence of solar energy, flight condition as vehicle speed, air density, temperature.