• Title/Summary/Keyword: 복합 압출

Search Result 162, Processing Time 0.024 seconds

NEW TECHNOLOGY - Effects of Peroxide on Physical Properties on Bioplastic Films (바이오 플라스틱 필름에 과산화물 첨가로 물성에 미치는 영향)

  • 박형우
    • The monthly packaging world
    • /
    • s.354
    • /
    • pp.91-97
    • /
    • 2022
  • 바이오플라스틱의 니즈는 계속 증가 중이며 생분해 바이오플라스틱이 실제 현장에 사용되기 위해서는 물성개선이 필요한 실정이다. 본 연구에서는 바이오플라스틱에 과산화물 첨가제를 농도별로 첨가하여 생산한 복합화 필름의 신장률, morphology, TGA 변화를 조사하였다. 신장률과 TGA는 과산화물 상용화제 첨가구가 대조구보다 더 우수한 것으로 나타났다. 상용화제 첨가량에 따라서 압출성형 공정의 생산성에 영향을 미치며, 과산화물은 적정량을 첨가하는 것이 중요한 것으로 나타났다. 복합화 필름의 morphology를 분석한 결과 수지별로 결정화 속도가 달라 이형분산배열을 관찰할 수 있었고, 표면물성은 4%의 과산화물 첨가구에서 가장 좋은 것으로 나타났다. 이상의 결과로부터 복합화 생분해 필름 제조 방법으로 과산화물 상용화 제를 4% 첨가한 시험구가 우수한 것으로 사료되었다.

  • PDF

The Effect of Compatibilizer on the Rheological Properties of Polypropylene/Glass-fiber Composites (폴리프로필렌/유리섬유 복합재료의 유변물성에 미치는 상용화제의 영향)

  • Lee Seung-Hwan;Youn Jae-Ryoun
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.15-22
    • /
    • 2006
  • In this study, we prepared glass fiber reinforced polypropylene composites using Brabender twin-screw extruder. Compatibilizer, polypropylene-based maleic anhydride (PP-g-MAH), was used to increase the molecular interaction between polypropylene matrix and glass fiber and to enhance melt processability. We also measured the shear and uniaxial elongational behaviors of glass-fiber reinforced composites in the absence or presence of compatibilizer. The effects of compatibilizer and fiber loading on the viscoelastic behaviors were examined. It was fuund that the PP-g-MAH compatibilizer improved the fluidity and increased the molecular bonding of composite melts in shear flow. Transient elongational viscosity was increased with fiber loadings in uniaxial elongational flow However, it was decreased with increasing elongational rates because of microscale shear flow between fibers.

Composite Material made of Recycling Paper and Plastics (폐지를 활용한 재생 플라스틱)

  • 윤승원;이장용;김윤식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.697-702
    • /
    • 2002
  • Composite material made of recycling paper and plastics was developed. The tension and bending testing result of developed composite material shows that the cellulose contained in paper contributes much to get high flexural rigidity. As an application example, the raised access floor for office automation purpose was developed by making use of developed composite material. Manufacturing process together with the extrusion die and the compression die for to manufacture the access floor have been developed.

  • PDF

Finite Element Analysis and Experiment of Combined Extrusion in Semi-Solid State (반용융 복합압출 제품의 성형실험 및 유한요소해석)

  • 최재찬;박준홍;김병민
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.313-318
    • /
    • 1999
  • Many products related to automobile and airplane industry have been manufactured by semi-solid forging. In this paper finite element analysis of product by combined extrusion in semi-solid state was performed and its experimental verification using A356 was conducted. distribution of solid fraction was analyzed and compared with the experimental microstructure in the product. In addition, distribution of temperature in the product was analysed by finite element method.

  • PDF

Application of Ceramic Membrane (세라믹 분리막의 응용)

  • 김은옥
    • Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.12-21
    • /
    • 1993
  • 세라믹 분리막은 알루미나($Al_2O_3$), 지르코니아($ZrO_2$), Carbon, 실리콘 카바이드, 스테인레스 등의 무기재료를 이용하여 제조된 분리막이다. 압출성형공정으로 제조된 지지체는 1700$^{\circ}C$ 이상의 소결공정을 거치므로 지지체 상단에 슬러리 코팅공정으로 형성된 얇은 막에게 안정된 분리기능을 수행할 수 있도록 커다란 물리적 강도를 제공한다. 따라서, 세라믹 분리막은 다공성 세라믹 구조를 갖는 특징적인 두 개 또는 세 개의 균일한 층으로 구성된 복합막이라 할 수 있다.

  • PDF

유리섬유(glass fiber) 가공

  • 박병기
    • Textile Coloration and Finishing
    • /
    • v.2 no.3
    • /
    • pp.65-75
    • /
    • 1990
  • 유리를 압출하여 필라멘트형으로 제조하면 많은 소비자들의 요구를 충족시킬 수 있는 장식용 섬유로서 유용한 방적 재료가 얻어진다. 또한 유리의 고강도와 고탄성률을 고려하여 많은 산업용 직물과 복합재료의 보강재료에 이용된다. 본고에서는 유리섬유의 제조, 분류, 조성, 성질, 특성 등에 대해서 설명하고, 가공측면에서 표면처리 기술, Pre-preg의 제조와 용도, 필터백의 특징과 응용, 유리커튼의 특징과 제조, 방충망의 제조, 고무보강 기술에 대해서 언급하고저 한다.

  • PDF

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

Study on Weight Reduction of Urban Transit Carbody Based on Material Changes and Structural Optimization (도시철도차량 차체의 경량화를 위한 소재 변경 및 구조체 최적화 연구)

  • Cho, Jeong Gil;Koo, Jeong Seo;Jung, Hyun Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1099-1107
    • /
    • 2013
  • This study proposes a weight reduction design for urban transit, specifically, a Korean EMU carbody made of aluminum extrusion profiles, according to size optimization and useful material changes. First, the thickness of the under-frame, side-panels, and end-panels were optimized by the size optimization process, and then, the weight of the Korean EMU carbody could be reduced to approximately 14.8%. Second, the under-frame of the optimized carbody was substituted with a frame-type structure made of SMA 570, and then, the weight of the hybrid-type carbody was 3.8% lighter than that of the initial K-EMU. Finally, the under-frame and the roof-panel were substituted with a composite material sandwich to obtain an ultralight hybrid-type carbody. The weight of the ultralight hybrid-type carbody was 30% lighter than that of the initial K-EMU. All the resulting carbody models satisfied the design regulations of the domestic Performance Test Standard for Electrical Multiple Unit.

Rheological and Thermal Properties of PLA Nano-composite Modified by Reactive Extrusion (반응압출 공정으로 개질된 PLA 나노복합체의 유변학적 및 열적 물성)

  • Kang, Gyeoung-Soo;Kim, Bong-Shik;Shin, Boo-Young
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • In this study, poly(lactic acid) (PLA) was modified by reactive extrusion with a functional monomer GMA(glycidyl methacrylate), MMT(montmorillonite), and initiator to enhance the melt strength. Each modified PLA was prepared with different amounts of GMA and MMT and was characterized by measuring thennal- and melt-viscoelastic properties. The degree of dispersion of MMT was measured by X-ray diffraction(XRD) and transmission electron microscopy(TEM). The glass transition temperature($T_g$) of modified PLA-GMA-MMT nanocomposite decreased with increasing GMA content, but was a little affected by the amount of MMT. Surface analysis showed that the nanocomposite became more intercalated than exfoliated as the amount of MMT increases. The complex viscosity and storage modulus of the nano-composite were greatly increased by addition of MMT.