• Title/Summary/Keyword: 복합 냉각

Search Result 184, Processing Time 0.025 seconds

가스터빈 공기냉각용 고온 풍동 시험설비 및 측정기술 소개

  • Lee, Jeong-Ho
    • Journal of the KSME
    • /
    • v.57 no.11
    • /
    • pp.39-43
    • /
    • 2017
  • 최근 정부의 친환경 에너지 정책에 따라 고효율 가스 복합 발전이 기존의 석탄 화력 복합 발전을 대체하는 추세에 있다. 발전용 가스터빈의 효율 향상에 따라 터빈 입구온도는 현재 $1,600^{\circ}C$에 이르러 가스터빈의 냉각 부하가 크게 증가되어 고온에서의 가스터빈 냉각 기술이 더욱 중요하게 되었다. 이 글에서는 고온에서 가스터빈 공기냉각 기구를 개발하고 냉각 성능 평가에 필요한 고온 풍동 시험설비 및 측정기술을 간략하게 소개하고자 한다.

  • PDF

A Numerical Study on Cooling Characteristics of a Rocket-engine-based Incinerator Devised for High Burning Rate of Solid Particles (고체입자의 높은 연소율을 갖기 위해 고안된 로켓 엔진 기반 소각로의 냉각 해석)

  • Son, Jinwoo;Sohn, Chae Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • Cooling characteristics are investigated numerically in the chamber for high-performance burnout of wastes with solid phase. Before the combustion chamber is manufactured, combustion analysis is performed for evaluation of burning rate and cooling performance. A water cooling method is applied and its feasibility for cooling is examined depending on coolant flow rate. Another method of complex cooling is adopted by combining air film cooling with water cooling, leading to improved cooling performance.

Enhanced Cooling Performance of Polymer Actuators Using Carbon Nanotube Composites (탄소나노튜브 복합재를 이용한 고분자 액추에이터의 냉각 개선)

  • Piao, Chengxu;Suk, Ji Won
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.165-168
    • /
    • 2017
  • Coiled polymer actuators fabricated by twisting polymer fishing lines or sewing threads respond to heating and cooling with their contraction and relaxation. However, their actuation speed is highly dependent on the heating and cooling rates. In order to improve the actuation speed, the coiled polymer actuator was coated with polydimethylsiloxane composites. The introduction of multi-walled carbon nanotubes into the polydimethylsiloxane improved the actuation speed by about 13%.

Influence of Precooling Cooling Air on the Performance of a Gas Turbine Combined Cycle (냉각공기의 예냉각이 가스터빈 복합발전 성능에 미치는 영향)

  • Kwon, Ik-Hwan;Kang, Do-Won;Kang, Soo-Young;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.171-179
    • /
    • 2012
  • Cooling of hot sections, especially the turbine nozzle and rotor blades, has a significant impact on gas turbine performance. In this study, the influence of precooling of the cooling air on the performance of gas turbines and their combined cycle plants was investigated. A state-of-the-art F-class gas turbine was selected, and its design performance was deliberately simulated using detailed component models including turbine blade cooling. Off-design analysis was used to simulate changes in the operating conditions and performance of the gas turbines due to precooling of the cooling air. Thermodynamic and aerodynamic models were used to simulate the performance of the cooled nozzle and rotor blade. In the combined cycle plant, the heat rejected from the cooling air was recovered at the bottoming steam cycle to optimize the overall plant performance. With a 200K decrease of all cooling air stream, an almost 1.78% power upgrade due to increase in main gas flow and a 0.70 percent point efficiency decrease due to the fuel flow increase to maintain design turbine inlet temperature were predicted.

Modeling of Cooling Channels of Injection Mould using Functionally Graded Material (기능성 경사 복합재를 이용한 사출금형의 냉각회로 모델링)

  • Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1647-1653
    • /
    • 2011
  • The cycle time in injection moulding greatly depends on the cooling time of the plastic part that is controlled by cooling channels. Cooling channels are required to facilitate the heat transfer rate from the die to the coolant without reducing the strength of the die. Employing layered manufacturing techniques (LMT), a die embedding conformal cooling channels can be fabricated directly while conventional cooling channels are usually made of straight drilled hole. Meanwhile, H13 tool steel is widely used as the die material because of its high thermal resistance and dimensional stability. However, H13 with a low thermal conductivity is not efficient for certain part geometries. In this context, the use of functionally graded materials (FGMs) between H13 and copper may circumvent a tradeoff between the strength and the heat transfer rate. This paper presents a method for modeling of conformal cooling channels made of FGMs.

Material Trends of Nozzle Extension for Liquid Rocket Engine (액체로켓엔진 노즐확장부 소재기술 동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.139-149
    • /
    • 2011
  • The combustion chamber and nozzle of a liquid rocket engine need thermal protection against the high temperature combustion gas. The nozzle extension of a high-altitude engine also has to be compatible with high temperature environment and several kinds of cooling methods including gas film cooling, ablative cooling and radiative cooling are used. Especially for an upper-stage nozzle extension having a large expansion ratio, the weight impact on the launcher performance is crucial and it necessitated the development of light-weight refractory material. The present survey on the nozzle extension materials employed in the liquid rocket engines of USA, Russia and European Union has revealed a trend that the heavier metals like stainless steels and titanium alloys are being substituted with light weight carbon fiber or ceramic matrix composite materials.

  • PDF

A Study on Cooling of Piezoelectric Element of Multifunction Equipment for Vacuum Exhaust and Ultrasonic Joining (진공 배기 및 초음파 접합 복합기 진동자 냉각에 관한 연구)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1511-1517
    • /
    • 2012
  • Vacuum chamber or vacuum tube for the exhaust process of vacuum glazing is presently used, where excessive time and expenses are required to make the whole vacuum chamber or tube vacuum. To solve this problem, multifunction equipment for vacuum exhaust and ultrasonic joining at atmospheric pressure has been developed, in which a piezoelectric vibrator experiences excessive temperature rise resulting in optimizing the cooling of the equipment. Therefore, in this study, cooling effects of natural convection and forced convection methods were identified by numerical analysis and experiments, and cooling performance of the multifunction equipment was optimized.

Detection and Evaluation of Microdamages in Composite Materials Using a Thermo-Acoustic Emission Technique (열-음향방출기법을 이용한 복합재료의 미세손상 검출 및 평가)

  • 최낙삼;김영복;이덕보
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • Utilizing a thermo-acoustic emission (AE) technique, a study on detection and evaluation of microfractures in cross-ply laminate composites was performed. Fiber breakages and matrix fractures formed by a cryogenic cooling at $-191^{\circ}C$ were observed with ultrasonic C-scan, optical and scanning electron microscopy. Those microfractures were monitored in a non-destructive in-situ state as three different types of thermo-AE signals classified on the basis of Fast-Fourier Transform and Short-Time Fourier Transform. Thus, it was concluded that real-time estimation of microfracture processes being formed during cryogenic cooling could be accomplished by monitoring such different types of thermo-AEs in each time-stage and then by analyzing thermo-AE behaviors for the respective AE types on the basis of the AE signal analysis results obtained during thermal heating and cooling load cycles.

A Design Study for Improving Thermal Efficiency of Combined Cycle Power Plants using LNG Cold Energy - Design and Off-design Modelling of Gas-turbine Based Combined Cycle - (LNG 냉열을 이용한 복합발전 플랜트의 성능향상에 관한 연구(I) - 복합화력 발전플랜트의 설계점 및 탈설계점 모델링 -)

  • 오세기;김병일
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.159-165
    • /
    • 1999
  • 복합화력 발전플랜트의 운전에서 특히 하절기의 첨두부하시에 외기온도의 상승으로 인한 가스터빈의 출력 감소를 해결하기 위한 방법으로 LNG 연료가 보유하고 있는 냉열을 이용하여 압축기로 유입되는 공기 온도를 감소시키는 냉각시스템의 개념을 개발하고자 복합화력 발전플랜트에 대한 설계점 및 외기온도 변화에 대한 탈설계점 모델링 연구를 수행하였다. 대상 프랜트는 940 MW 서인천 복합 발전플랜트 모듈의 단위 블록을 선택하였으며 발전플랜트 전용 해석코드인 GateCycle을 이용하여 가스터빈과 증기사이클의 주요 기기 들에 대한 모델을 개발하였다. 개발된 모델의 결과를 대상플랜트의 시운전결과와 비교하여 모델의 적정성을 검증하였다. 출력, 효율, 온도 및 유량 등 주요 설계인자들이 최대 ~1.3%의 상대오차 범위 안에서 만족할 만한 신뢰도를 갖는 것을 확인하였다. 탈설계점 성능해석은 본 논문과 관련한 연구의 주목적인 LNG 냉열에 의한 유입공기 냉각시스템 설계시의 경계변수인 외기온도 증가에 대한 각 사이클의 특성변화를 대상으로 하였다. 종합적으로 외기온도가 증가하면 압축기로 유입되는 공기의 양과 이에 대응하는 소요 연료량이 동시에 감소하므로 연소에 따른 가스터빈의 팽창비가 감소한다. 이로 인하여 외기온도 증가시에 가스터빈 출력감소율은 0.5%/$^{\circ}C$로서 배기가스를 이용하는 증기사이클의 출력감소율 0.2%/$^{\circ}C$에 비해 민감하므로 가스터빈 유입공기의 냉각시스템의 설계는 복합화력발전 플랜트의 효율 향상에 크게 기여할 것으로 예상된다.

  • PDF

A Study on Crystallization of Thermoplastic Aromatic Polymer (열가소성 방향족 폴리머의 결정화 특성에 대한 연구)

  • Park, Dong-Cheol;Park, Chang-Wook;Shin, Do-Hoon;Kim, Yun-Hae
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2018
  • Thermoplastic composite has been limitedly used in high performance aerospace industry due to relatively low mechanical properties even though it has various advantages. But, thermoplastic aromatic polymer composite has recently been researched and utilized much. In this study, PEEK and PPS neat resin film as representative thermoplastic aromatic polymer were processed through continuous heating, cooling and reheating cycle. Property change such as glass transition temperature and melting temperature were identified and crystallinity variation by different cooling rate were evaluated. In the first (heating) run, polymer specimens were kept for 5 minutes at higher temperature than melting point to remove previous thermal history, and crystallization reaction was controlled by adjusting cooling rate to 2, 5, 10, 20 and $40^{\circ}C/minute$ in the second (cooling) run. In the third (heating) run, specimen crystallinity were verified by measuring the melting enthalpy. The initial specimens containing high portion of amorphous structure exhibited cold crystallization and clear glass transition in the first run whereas they did not show in the third run due to the increase of crystalline structure portion. As cooling rate decreases through the second cooling run, the crystallinity of the specimen increased. PEEK polymer had 21.9~39.3% crystallinity depending on cooling rate change whereas PPS polymer showed 29.1~31.2%.