• Title/Summary/Keyword: 복합화력발전

Search Result 119, Processing Time 0.025 seconds

Suggestion of Logic to Control Power Plant Equipped ESS in case of Full Open Turbine Control Valve (ESS를 이용한 발전소 터빈제어밸브 전개 운전 제어로직 제안)

  • In Young Chung;Jae-Heon Lee
    • Plant Journal
    • /
    • v.18 no.4
    • /
    • pp.66-72
    • /
    • 2023
  • In order to respond to the demand for flexible operation of thermal power generation, development of natural sliding pressure operation that minimizes throttle loss by opening the turbine control valve 100% and maximize power generation efficiency in conjunction with ESS in order to quickly respond to fluctuations in the system frequency is required. The logic development of natural sliding pressure operation with ESS was developed to modify the existing logic at the power plant's top-level control logic such as the unit master, the boiler master and the turbine master. Cooperative control algorithms that complement the advantages and disadvantages of ESS operation (quick response, limited capacity) and power plant operation (slow response, continuous operation) not only improve efficiency when applied to actual power plants, but also respond quickly and flexibly to load demands to ensure system stability.

  • PDF

Analysis of the Mediated Effects for the Organization Factors in a Combined-Cycle Power Plant (복합화력발전소 경영진의 안전관심이 직원의 안전참여에 미치는 영향관계에서 조직요인의 매개효과 분석)

  • Choi, JaeWoo;Um, SungIn;Hong, InGi
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.22-29
    • /
    • 2016
  • Organization characteristics and safety culture contains a wide variety of factors. It should be accessed in a variety of ways in order to improve such a safety culture. Thru by analyzing the safety culture factor of combined-cycle-power plants, it was found to be a positive role in the improvement and enhancement for the improving of safety training, communication and training participation level by structural equation modeling analysis as the management's interest is increased. As the safety training is emphasized, it would be help to improve work participation.

Effect of Carbon Capture Using Pre-combustion Technology on the Performance of Gas Turbine Combined Cycle (연소전 처리를 이용한 탄소포집이 가스터빈 복합화력 플랜트의 성능에 미치는 영향)

  • YOON, SUKYOUNG;AHN, JIHO;CHOI, BYEONGSEON;KIM, TONGSEOP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.571-580
    • /
    • 2016
  • In this paper, performance of the gas turbine combined cycle(GTCC) using pre-combustion carbon capture technology was comparatively analysed. Steam reforming and autothermal reforming were used. In the latter, two different methods were adopted to supply oxygen for the reforming process. One is to extract air form gas turbine compressor (air blowing) and the other is to supply oxygen directly from air separation unit ($O_2$ blowing). To separate $CO_2$ from the reformed gas, the chemical absorption system using MEA solution was used. The net cycle efficiency of the system adopting $O_2$ blown autothermal reforming was higher than the other two systems. The system using air blown autothermal reforming exhibited the largest net cycle power output. In addition to the performance analysis, the influence of fuel reforming and carbon capture on the operating condition of the gas turbine and the necessity of turbine re-design were investigated.

Corrosion of Fe-2.25%Cr-1%Mo Steels at $600-800^{\circ}C$ in $N_2/H_2O/H_2S$ atmospheres (Fe-2%Mn-0.5%Si강판의 $600-800^{\circ}C$, $N_2/H_2O/H_2S$분위기에서의 고온부식)

  • Kim, Min-Jeong;Bong, Seong-Jun;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.77-78
    • /
    • 2011
  • 저비용, 고효율, 안정적 수급이 가능한 전력 에너지원이 요구되면서 석탄이 새로운 에너지원으로 급부상하게 됨에 따라 차세대 친환경 석탄화력 발전기술인 IGCC (Integrated Gasification Combined Cycle) 발전 시스템 의 개발이 필요하게 되었다. 석탄가스화 공정(IGCC: integrated coal gasification combined cycle)은 석탄을 가스화한 후 이를 이용하여 복합발전소를 운전하는 발전기술로서 석탄을 고온, 고압아래에서 수소와 일산화탄소를 주성분으로 한 합성가스로 전환한 뒤 합성가스 중에 포함 된 분진과 황 화합물 등 유해물질을 제거하고 천연가스와 유사한 수준으로 정제하여 전기를 생산하는 친환경 발전 기술이다.

  • PDF

Regenerating Condition Optimization of NGCC Combined Carbon Capture Process Simultaneously Considering Absorption and Regeneration Rates (흡수율과 재생율을 동시 고려한 천연가스복합발전 공정 연계 이산화탄소 포집 공정의 재생 조건 최적화)

  • Jeong Hun Choi;Young-Hwan Chu
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.368-377
    • /
    • 2023
  • Natural Gas Combined Cycle(NGCC) recently receives lots of attention as an attractive form of power plants by virtue of its low carbon emission compared with coal-fired power plant. Nevertheless, it also needs carbon capture process since it is difficult to completely suppress carbon emission even for the NGCC. A simulation study has been performed to optimize operating condition of a carbon capture process using MEA considering low partial pressure of carbon dioxide in NGCC emission gas. For accurate optimization, overall process model including both NGCC and the carbon capture process has been built with a simulation software. Then, optimization in which various performance indices such as carbon dioxide absorption rate, solvent regeneration rate and power loss in the NGCC are simultaneously reflected has been done. Especially, it is noticeable that this study focuses on not only the amount of energy consumption but also the absorption and regeneration performance of carbon capture process. The best result considering all the performance indices has been achieved when the reboiler temperature is 120 ℃ and the reason has been analyzed.

A Study on the Demonstration of Yellow Plume Elimination System from Combined Cycle Power Plant Using Liquid Injection System (액상 직분사 시스템을 이용한 복합화력 황연제거 실증 연구)

  • Lee, Seung-Jae;Kim, Younghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.317-324
    • /
    • 2020
  • Combined cycle power plants (CCPP) that use natural gas as fuel are easier to start and stop, and have lower pollutant emissions, so their share of domestic power generation facilities is steadily increasing. However, CCPP have a high concentration of nitrogen dioxide (NO2) emission in the initial start-up and low-load operation region, which causes yellow plume and civil complaints. As a control technology, the yellow plume reduction system was developed and operated from the mid-2000s. However, this technology was unable to control the phenomenon due to insufficient preheating of the vaporization system for 10 to 20 minutes of the initial start-up. In this study, CFD analysis and demonstration tests were performed to derive a control technology by injecting a reducing agent directly into the gas turbine exhaust duct. CFD analysis was performed by classifying into 5 cases according to the exhaust gas condition. The RMS values of all cases were less than 15%, showing a good mixing. Based on this, the installation and testing of the demonstration facilities facilitated complete control of the yellow plume phenomenon in the initial start-up.

Measurement of the Benefits from Safeguarding Energy Security through Building the Integrated Gasification Combined Cycle Power Plant (석탄가스화 복합발전소 건설의 에너지안보 확보편익 추정)

  • Lim, Seul-Ye;Choi, Hyo-Yeon;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.40-47
    • /
    • 2015
  • Integrated gasification combined cycle (IGCC) power plants not only emit less greenhouse gases and air pollutants than conventional coal-fired power plants, but also use low-price, low-quality, and internationally easily procurable coal. Thus we can benefit from safeguarding energy security through building the IGCC power plant. This paper attempts to value the benefits of energy security enhanced by IGCC power plant. To this end, we report here the results from a contingent valuation survey of randomly selected 600 households. A combination of a double-bounded model and a spike model is applied for the purpose of increasing statistical efficiency and dealing with zero(0) willingness to pay data, respectively. The results show that the respondents are additionally willing to pay 6.05 won for 1kWh of electricity generated from IGCC power plant. In other words, the benefits from safeguarding energy security through building the IGCC power plant are 6.05 won per kWh. Given that the expected amount of generation from the Taean IGCC power plant that is scheduled to be built in late 2015 is 2.27 TWh per year, the benefits are estimated to be 13.74 billion won per year.

Planning research for Floating Power Plant by modifying LNG carriers (LNG선 개조 발전플랜트 기획연구)

  • Lee, Kangki;Bae, Jaeryu;Shin, Jaewoong;Park, Jongbok
    • Plant Journal
    • /
    • v.16 no.3
    • /
    • pp.37-41
    • /
    • 2020
  • Lately old LNG carriers increased and ship price is getting down. So Interest for reuse and modification of used LNG carriers is growing. Also the needs for replacement of old power plant is increasing. Additionally eco friendly fuel such as LNG become attractive. Consequently gas power plant is getting much more popular than before. So in this research planning, we consider the floating power plant by modifying LNG carriers. This plant has the various function including storage, power plant and bunkering fuction etc. Through this multifunctional plant, we are ready for the old power plant shutdown and energy crisis in the future when we can supply the urgent mobile floating power plant quickly in time.

A Study on the Bidding Strategies of Combined Cycle Plants in a Competitive Electricity Market (경쟁적 전력시장에서 복합화력발전의 입찰전략에 대한 연구)

  • Kim, Sang-Hoon;Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.694-699
    • /
    • 2009
  • Combined cycle plants which feature distinct advantages for power generation such as fast response, high efficiency, environmental friendliness, fuel flexiblity represent the majority of new generating plant installations across the globe. Combined cycle plants have different operating modes where the operating parameters can differ greatly depending which mode is operating at the time. This paper addresses the bidding strategy model of combined cycle plants in a competitive electricity market by using a characteristic of multiple operating modes of combined cycle plants. Simulation results of case studies show that an operating mode among multiple ones is selected strategically in generation bidding for more profit of generation company.

Performance Analysis of Once-through HRSG and Steam Turbine System (관류형 열회수 증기발생기와 증기터빈 시스템의 성능해석)

  • Yang, J.S.;Kim, T.S.;Ro, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.872-877
    • /
    • 2001
  • This study analyzed the design performance of the bottoming system of combined cycle power plants adopting a single-pressure once-through heat recovery steam generator with reheat. A computer program was constructed and parametric analyses were carried out to present the criteria for determining the reheat pressure and the location of the starring point of the reheater in the HRSG. The performance of the bottoming system was presented for the range from high subcritical to supercritical pressures. It was founded that the power of the bottoming system can be as high as that of the present triple-pressure bottoming system even with a higher exhaust gas temperature. A requirement for this high performance is a proper arrangement of the reheater.

  • PDF