• Title/Summary/Keyword: 복합형 카메라 시스템

Search Result 25, Processing Time 0.023 seconds

Design of Image Tracking System Using Location Determination Technology (위치 측위 기술을 이용한 영상 추적 시스템 설계)

  • Kim, Bong-Hyun
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.143-148
    • /
    • 2016
  • There is increasing concern about security as a need for increased safety in the information industry society. However, it does not meet the needs for safety including CCTV. Therefore, in this paper, we link the processing technology using the image information to the IPS system consisting of GPS and Beacon. It designed a conventional RFID tag attached discomfort and image tracking system is limited to complement the disadvantages identifiable area. To this end, we designed a smart device and the Internet of Things convergence system and a research to ensure the accuracy and reliability of the IPS of the access control system. Finally, by leveraging intelligent video information using a PTZ camera, and set the entrant management policies it was carried out to control the situation and control. Also, by designing the integrated video tracking system, an authentication server, visualization systems were designed to establish an efficient technique for analyzing the IPS entrant behavior patterns.

Sign Language recognition Using Sequential Ram-based Cumulative Neural Networks (순차 램 기반 누적 신경망을 이용한 수화 인식)

  • Lee, Dong-Hyung;Kang, Man-Mo;Kim, Young-Kee;Lee, Soo-Dong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.205-211
    • /
    • 2009
  • The Weightless Neural Network(WNN) has the advantage of the processing speed, less computability than weighted neural network which readjusts the weight. Especially, The behavior information such as sequential gesture has many serial correlation. So, It is required the high computability and processing time to recognize. To solve these problem, Many algorithms used that added preprocessing and hardware interface device to reduce the computability and speed. In this paper, we proposed the Ram based Sequential Cumulative Neural Network(SCNN) model which is sign language recognition system without preprocessing and hardware interface. We experimented with using compound words in continuous korean sign language which was input binary image with edge detection from camera. The recognition system of sign language without preprocessing got 93% recognition rate.

  • PDF

A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model (지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로)

  • Kim, Yechan;Choi, Kwangeun;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.217-242
    • /
    • 2022
  • With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.

A Study on Image-Based Mobile Robot Driving on Ship Deck (선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구)

  • Seon-Deok Kim;Kyung-Min Park;Seung-Yeol Wang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1216-1221
    • /
    • 2022
  • Ships tend to be larger to increase the efficiency of cargo transportation. Larger ships lead to increased travel time for ship workers, increased work intensity, and reduced work efficiency. Problems such as increased work intensity are reducing the influx of young people into labor, along with the phenomenon of avoidance of high intensity labor by the younger generation. In addition, the rapid aging of the population and decrease in the young labor force aggravate the labor shortage problem in the maritime industry. To overcome this, the maritime industry has recently introduced technologies such as an intelligent production design platform and a smart production operation management system, and a smart autonomous logistics system in one of these technologies. The smart autonomous logistics system is a technology that delivers various goods using intelligent mobile robots, and enables the robot to drive itself by using sensors such as lidar and camera. Therefore, in this paper, it was checked whether the mobile robot could autonomously drive to the stop sign by detecting the passage way of the ship deck. The autonomous driving was performed by detecting the passage way of the ship deck through the camera mounted on the mobile robot based on the data learned through Nvidia's End-to-end learning. The mobile robot was stopped by checking the stop sign using SSD MobileNetV2. The experiment was repeated five times in which the mobile robot autonomously drives to the stop sign without deviation from the ship deck passage way at a distance of about 70m. As a result of the experiment, it was confirmed that the mobile robot was driven without deviation from passage way. If the smart autonomous logistics system to which this result is applied is used in the marine industry, it is thought that the stability, reduction of labor force, and work efficiency will be improved when workers work.

A Study on forest fires Prediction and Detection Algorithm using Intelligent Context-awareness sensor (상황인지 센서를 활용한 지능형 산불 이동 예측 및 탐지 알고리즘에 관한 연구)

  • Kim, Hyeng-jun;Shin, Gyu-young;Woo, Byeong-hun;Koo, Nam-kyoung;Jang, Kyung-sik;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1506-1514
    • /
    • 2015
  • In this paper, we proposed a forest fires prediction and detection system. It could provide a situation of fire prediction and detection methods using context awareness sensor. A fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire in complex situations. In addition, it is possible to differential management of intensive fire detection and prediction for required dividing the state of fire zone. Therefore we propose an algorithm to determine the prediction and detection from the fire parameters as an temperature, humidity, Co2 and the flame in real-time by using a context awareness sensor and also suggest algorithm that provide the path of fire diffusion and service the secure safety zone prediction.