• Title/Summary/Keyword: 복합주물

Search Result 5, Processing Time 0.031 seconds

Effects of Parameters on Abrasion-Resistant Layer of Composite Structure Formed by Evaporation Pattern Casting (소실모형주조법에 의한 내마모 복합조직층 형성에 미치는 공정인자의 영향)

  • Choi, Chang-Young;Mo, Nam-Gyu;Kim, Gun-ho;Yoon, Jong-Cheon;Jung, Yu-Hyun;Kim, Dong-Hyuk;Choi, Yong-Jin;Lee, In-Kyu;Cho, Yong-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.89-94
    • /
    • 2018
  • Due to industrial advancement and environmental concerns, there is a demand for light-weight material parts with high-performance characteristics. In order to meet this demand, various studies have been conducted on developing high-performance castings to achieve composite features by coating only specific parts that require high performance, with dissimilar joining, rather than coating the entire material part. This study analyzed the possibility of forming a local composite layer on an aluminum alloy through evaporation pattern casting, and the effects of parameters on the aluminum alloy.

A Study of Regeneration Reaction for Desulfurization Sorbents using Natural Manganese Ore (천연 망간 광석 탈황제의 재생 반응 특성 연구)

  • 윤여일;윤용승;김성현
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.247-253
    • /
    • 2002
  • Natural manganese ore was selected as main active component for a non-zinc desulfurization sorbent used in the gas clean-up process of the integrated gasification combined cycle (IGCC) because of excellent H$_2$S removal efficiency and economical aspect . In this study, the regeneration characteristics of sorbent after desulfurization reaction were determined in a thermobalance reactor and a fixed bed reactor in the temperature range of 350~55$0^{\circ}C$. The mixed gases of oxygen and nitrogen are used as the regeneration reaction gases for manganese sorbent. According to Mn-S-O phase diagram, the manganese sorbent has a low regeneration efficiency in medium temperature due to formation of MnSO$_4$ and the regeneration temperature must be over 85$0^{\circ}C$. To improve that problem, ammonia and steam was added in regeneration mixed gases. Effect of new regeneration method was determined by XRD and difference of desulfurization through multicycle tests.

A Study on the Development of Ultra-precision Small Angle Spindle for Curved Processing of Special Shape Pocket in the Fourth Industrial Revolution of Machine Tools (공작기계의 4차 산업혁명에서 특수한 형상 포켓 곡면가공을 위한 초정밀 소형 앵글 스핀들 개발에 관한 연구)

  • Lee Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Today, in order to improve fuel efficiency and dynamic behavior of automobiles, an era of light weight and simplification of automobile parts is being formed. In order to simplify and design and manufacture the shape of the product, various components are integrated. For example, in order to commercialize three products into one product, product processing is occurring to a very narrow area. In the case of existing parts, precision die casting or casting production is used for processing convenience, and the multi-piece method requires a lot of processes and reduces the precision and strength of the parts. It is very advantageous to manufacture integrally to simplify the processing air and secure the strength of the parts, but if a deep and narrow pocket part needs to be processed, it cannot be processed with the equipment's own spindle. To solve a problem, research on cutting processing is being actively conducted, and multi-axis composite processing technology not only solves this problem. It has many advantages, such as being able to cut into composite shapes that have been difficult to flexibly cut through various processes with one machine tool so far. However, the reality is that expensive equipment increases manufacturing costs and lacks engineers who can operate the machine. In the five-axis cutting processing machine, when producing products with deep and narrow sections, the cycle time increases in product production due to the indirectness of tools, and many problems occur in processing. Therefore, dedicated machine tools and multi-axis composite machines should be used. Alternatively, an angle spindle may be used as a special tool capable of multi-axis composite machining of five or more axes in a three-axis machining center. Various and continuous studies are needed in areas such as processing vibration absorption, low heat generation and operational stability, excellent dimensional stability, and strength securing by using the angle spindle.

Effect of Ni or Cu content on Microstructure and Mechanical Properties of Solution Strengthened Ferritic Ductile Cast Iron (고용강화 페라이트계 구상흑연주철의 미세조직 및 기계적 성질에 미치는 Ni 및 Cu의 영향)

  • Bang, Hyeon-Sik;Kim, Sun-Joong;Song, Soo-Young;Kim, Min-Su
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.411-418
    • /
    • 2021
  • In order to experimentally investigate the effect of Ni or Cu addition on microstructure and mechanical properties of high Si Solution Strengthened Ferritic Ductile cast Iron (SSF DI), a series of lab-scale sand casting experiment were conducted by changing initial concentration of Ni up to 3.0wt% or Cu up to 0.9wt% in the alloy. It was found that increase in Ni or Cu content in the alloy leads to increase in strength properties and hardness as well as decrease in ductility. The higher Ni or Cu content the SSF DI has, the higher fraction of pearlite was observed. At similar levels of Ni or Cu contents in the alloy, higher pearlite area fraction was observed in the Cu-containing SSF DI than that in the Ni-containing SSF DI. When the effect of the microstructure on the mechanical properties of Ni-containing SSF DI was considered, Ni-containing SSF DI was found to have excellent strength and hardness as well as good elongation when the pearlite fraction was controlled less than 10%. As the pearlite fraction in the Ni-containing SSF DI exceeds 10%, however, it shows drastic decrease in elongation. Meanwhile, gradual increase in strength and hardness, and decrease in elongation with respect to increase in pearlite fraction were observed in Cu-containing SSF DI. The different microstructure-mechanical property relationships between Ni-containing and Cu-containing SSF DI were due to the combined effect of the relatively weak pearlite stabilizing effect of Ni compared to that of Cu in high Si SSF DI, and matrix strengthening effect caused by the different amounts of those alloying elements required for similar pearlite fraction.