• Title/Summary/Keyword: 복합좌표계 시스템

Search Result 8, Processing Time 0.057 seconds

Analytical Study on the Slewing Dynamics of Hybrid Coordinate Systems (복합좌표계 시스템의 선회동역학에 관한 해석적 연구)

  • Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.36-44
    • /
    • 2003
  • In this paper, an analytic solution method is proposed to overcome the numerical problems when the slewing dynamics of hybrid coordinate systems is investigated via time finite element analysis. It is shown that the dynamics of the hybrid coordinate systems is governed by the coupled dual differential equations for both slewing and structural modes. Structural modes are transformed into the time-based modal coordinates and analytic spatial propagation equations are derived for each space-dependent time mode. Slew angle history is obtained analytically by appropriate applications of the boundary conditions and structural propagation is re-calculated using the slew angle. Numerical examples are demonstrated to validate the proposed analytic method in comparison to the existing state transition matrix method.

Application of Mixed Coordinate Technique for Elliptic Curves Defined over GF($p^m$) (GF($p^m$)상에서 정의되는 타원곡선을 위한 복합 좌표계 응용)

  • 정재욱
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.10 no.1
    • /
    • pp.77-87
    • /
    • 2000
  • 타원곡선 이산대수 문제에 기초한 공개키 암호시스템에서 타원곡선 멱승은 반드시 필요한 연산이며 연산들 중에서 가장 복잡도가 크다. 따라서 효율적인 암호시스템 구현을 위해서는 타원곡선 멱승연산을 효율적으로 구현하는 것이 중요하다. 본 논문에서는 복합 좌표계(mixed coordinate system)를 이용한 멱승 방법을 GF(pm)상에서 정의되는 타원 곡선을 적용하여 최적의 효율성을 갖는 타원곡선 멱승 구현법을 제안한다. 또한 ‘곱셈을 이용한 역원 연산 알고리즘(IM; Inversion with Multiplication)’을 이용하여 더욱 효율적인 구현이 가능함을 보인다.

A Study on the Establishment of Exercise Training System (운동 트레이닝 시스템 구축 방안에 관한 연구)

  • Oh, Eun-Yeol
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.195-203
    • /
    • 2021
  • This study is about building an exercise training system that analyzes images taken of a person's whole body and displays the normal operating range for user-specific movements as images. This study analyzes the front and side of the user's body based on the standing point, sets the node in the joint position of the human body, and places the node in the spatial coordinate system from the point of entry, and calibrates the normal node operating range according to the set standard node coordinate. Therefore, the method of the study presented a method to select differentiation from this study through prior technical research and literature research, and the purpose of the study is to establish a exercise training system accordingly.

The Lens Aberration Correction Method for Laser Precision Machining in Machine Vision System (머신비전 시스템에서 레이저 정밀 가공을 위한 렌즈 수차 보정 방법)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.301-306
    • /
    • 2012
  • We propose a method for accurate image acquisition in a machine vision system in the present study. The most important feature is required by the various lenses to implement real and of the same high quality image-forming optical role. The input of the machine vision system, however, is generated due to the aberration of the lens distortion. Transformation defines the relationship between the real-world coordinate system and the image coordinate system to solve these problems, a mapping function that matrix operations by calculating the distance between two coordinates to specify the exact location. Tolerance Focus Lens caused by the lens aberration correction processing to Galvanometer laser precision machining operations can be improved. Aberration of the aspheric lens has a two-dimensional shape of the curve, but the existing lens correction to linear time-consuming calibration methods by examining a large number of points the problem. How to apply the Bilinear interpolation is proposed in order to reduce the machining error that occurs due to the aberration of the lens processing equipment.

A Study on the Application Technique and Integration of Remote Sensing and Geographic Information System (리모트센싱과 GIS의 통합 및 그 적용기법에 관한 연구)

  • 안철호;연상호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.97-107
    • /
    • 1991
  • This paper was suggested the detailed methods on the integration of Remote Sensing and GIS for various application of two functions at the one system with making the most use of respective merits rather than make use of independent systems. It developed of algorithm about simultaneous overlay of raster and vector data for remote sensing and GIS for these objects. For test application on integration of remote sensing and GIS, it used of remote sensing data of satellite and used to topographic map of the same area for vector data acquisition of GIS application. For the practical application, it proved of effective value of integration of raster and vector data by present of useful technique with multilateral approach method through data conversion about thematic application for major application fields of remote sensing and GIS and it suggested that new application technique for integrated application of remote sensing GIS through synthetic situation analysis.

  • PDF

A Study on the Low Vibration Design of Paddle Type Composite Rotor Blade for Helicopter (Paddle형 복합재료 헬리콥터 로터 블레이드 저진동 설계 기술 연구)

  • Kim, Deok Gwan;Ju, Jin;Lee, Myeong Gyu;Hong, Dan Bi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.99-104
    • /
    • 2003
  • This paper described the general dynamic point for rotor design and the design procedure of low vibration blade. Generally, rotor rotating natural frequencies are determined to minimize hub loads, blade vibration and to suppress ground resonance at rotor design stage. First, through rotor frequency diagram, natural frequencies must be far away from resonance point and rotating loads generated from blade can be transformed to non-rotating load to predict fuselage vibration. Vibration level was predicted at each forward flight condition by calculating cockpit's vertical acceleration transferred from non-rotating hub load assuming a fuselage as a rigid body. This design method is applied to design current Next-generation Rotor System Blade(NRSB) and will be applied to New Rotor which will be developed Further.

A Study on the Navigation Parameters of L1, C/A GPS through the Experimental and Statistical Analysis (실험 및 통계적 분석을 통한 L1, C/A코드 GPS의 항법 파라미터연구)

  • Ko, Kwang-Soob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1959-1964
    • /
    • 2015
  • This research was focused on the analysis of navigation parameters from the received L1, C/A signal of the recent GPS, which has advanced with the SA policy change and the GPS modernization policy by the United States. It was done as a first step study for a comprehensive analysis on the multiple satellite navigation systems which will be adding or separating GPS signal. In particular, the statistical analysis on the GDOP change and positional accuracy based on the geocentric and spherical coordinate systems were investigated with carrier- to-noise ratio and the satellite geometry, The obtained GDOP values of HDOP, PDOP, VDOP are 0.5, 1.2, and 1.1, respectively in deviation. In addition, the positioning accuracies with these GDOP values were analyzed in the ellipsoidal and ECEF coordinates.

A Study on Metaverse Construction Based on 3D Spatial Information of Convergence Sensors using Unreal Engine 5 (언리얼 엔진 5를 활용한 융복합센서의 3D 공간정보기반 메타버스 구축 연구)

  • Oh, Seong-Jong;Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.171-187
    • /
    • 2022
  • Recently, the demand and development for non-face-to-face services are rapidly progressing due to the pandemic caused by the COVID-19, and attention is focused on the metaverse at the center. Entering the era of the 4th industrial revolution, Metaverse, which means a world beyond virtual and reality, combines various sensing technologies and 3D reconstruction technologies to provide various information and services to users easily and quickly. In particular, due to the miniaturization and economic increase of convergence sensors such as unmanned aerial vehicle(UAV) capable of high-resolution imaging and high-precision LiDAR(Light Detection and Ranging) sensors, research on digital-Twin is actively underway to create and simulate real-life twins. In addition, Game engines in the field of computer graphics are developing into metaverse engines by expanding strong 3D graphics reconstuction and simulation based on dynamic operations. This study constructed a mirror-world type metaverse that reflects real-world coordinate-based reality using Unreal Engine 5, a recently announced metaverse engine, with accurate 3D spatial information data of convergence sensors based on unmanned aerial system(UAS) and LiDAR. and then, spatial information contents and simulations for users were produced based on various public data to verify the accuracy of reconstruction, and through this, it was possible to confirm the construction of a more realistic and highly utilizable metaverse. In addition, when constructing a metaverse that users can intuitively and easily access through the unreal engine, various contents utilization and effectiveness could be confirmed through coordinate-based 3D spatial information with high reproducibility.