• Title/Summary/Keyword: 복합재료 평판

Search Result 143, Processing Time 0.029 seconds

Low-Velocity Impact Response of Hybrid Laminated Composite Plate (혼합적층된 복합재료평판의 저속충격응답)

  • Lee, Young-Shin;Kang, Kun-Hee;Park, Oung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.713-722
    • /
    • 1991
  • 본 연구에서는 graphite/epoxy와 glass/epoxy 그리고 graphite/epoxy와 kevl- ar/epoxy의 혼합적층된 복합재료 평판의 저속충격에 대한 응답을 유한요소 모델을 사 용하여 수치해석 한후, 각각의 단일적층판들의 결과와 비교하였으며, 이때의 접촉력 관계식은 Yang과 Sun이 제안한 수정된 접촉법칙을 이용하였다. 또한, 수치해석 결과 에서의 충격자의 속도변화로써 혼합적창판 배열에 따른 에너지 흡수율을 계산하였고, 이를 충격특성이 취약한 graphite/epoxy 단일 적층판의 결과와 비교 고찰하였다.

High Velocity Impact Analysis of Kevlar29/Phenolic Composite Plate (케블라 복합재 평판의 고속충돌 특성 수치해석)

  • Ahn, Jeoung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.18-23
    • /
    • 2009
  • Failure of Kevlar29/Phenolic composite plate under high velocity impact of FSP(Fragment Simulation Projectile) is investigated using a non-linear explicit finite element code, LS-DYNA. Composite laminate and impactor are idealized by solid element and interface between laminas are modeled by tied-break element in LS-DYNA. Interaction between impactor and laminate is simulated face-to-face eroding contact algorithm. When the stress level meets a failure criteria, the layer in the element is eroded. Numerical results are verified by existing test results.

Design/Manufacturing/Test of Curved Actuator LIPCA Composed of Piezoelectric Ceramic and Fiber Composite Layers (압전 세라믹과 섬유복합재료 층으로 구성된 곡면형 경량 작동기 LIPCA의 설계/제작 및 성능시험)

  • Sin, Seok-Jun;Kim, Ju-Sik;Gu, Nam-Seo;Park, Hun-Cheol;Gwak, Mun-Gyu;Yun, Gwang-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1268-1272
    • /
    • 2000
  • 본, 논문에서는 카본/에폭시, PZT 세라믹 박판, 글래스/에폭시 층으로 이루어진 곡면형 복합재료 작동기(LIPCA)의 설계, 제작 및 성능실험에 대한 연구 성과를 제시하고 있다. LIPCA의 큰 요점은 기존 THUNDER의 성능을 유지하면서 이를 경량화 하기 위하여 THUNDER의 금속 층을 상대적으로 가벼운 섬유 강화 복합재료로 대체하는 것이다. 이러한 경량화 작업으로 LIPCA는 기존 THUNDER 보다 약 $30{\sim}40%$ 정도의 무게를 감소시킬 수 있으며, 복합재료의 특성에 따라 설계의 유연성을 가질 수 있는 장점이 있다. 또한, 에폭시 수지를 사용함으로써 접착제 없이 평판 몰드에서 오토클레이브에서 $177^{\circ}C$로 경화되어, 탈형된 후 충분한 곡률을 형성하였다. 작동 성능 실험에서, LIPCA는 기존 THUNDER보다 작동변위가 향상됨을 보였다.

  • PDF

Displacement Prediction of Swept Composite Cantilevered Panel Wings Using Strains (변형률을 이용한 복합재 평판 후퇴익 구조물의 변위 예측)

  • Kim, Mun-Guk;You, Je-Gyun;Kim, So-Young;Kim, In-Gul;Kim, Geun-Sang;Jeon, Min-Hyeok
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.280-287
    • /
    • 2017
  • The complex deformation of the swept composite wing occurs due to the torsional load and bending load during the flight. Therefore, prediction for displacement of swept composite wing is required for structural health monitoring. Wing displacements can be predicted by using relationship between displacements and strains. The strain distributions on the fixed-end are complex due to the geometric shape of the swept wing. Because of those strain distribution, the wing displacement can be diversely predicted by the strain sensing locations. In this paper, displacements prediction of swept composite wing was performed by considering complex strain distributions. The predicted displacements under various loading condition were consistent with those calculated by FEA and verified through the bending test.

Analysis of Laminated Composite Stiffened Plates with arbitrary orientation stiffener (임의방향 보강재를 가지는 복합적층 보강판의 해석)

  • Yhim, Sung-Soon;Chang, Suk-Yoon;Park, Dae-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.147-158
    • /
    • 2004
  • For stiffened plates composed of composite materials, many researchers have used a finite element method which connected isoparametric plate elements and beam elements. However, the finite element method is difficult to reflect local behavior of stiffener because beam elements are transferred stiffness for nodal point of plate elements, especially the application is limited in case of laminated composite structures. In this paper, for analysis of laminated composite stiffened plates, 3D shell elements for stiffener and plate are employed. Reissner-Mindlin's first order shear deformation theory is considered in this study. But when thickness will be thin, isoparamatric plate bending element based on the theory of Reissner-Mindlin is generated by transverse shear locking. To eliminate the shear locking and virtual zero energy mode, the substitute shear strain field is used. A deflection distribution is investigated for simple supported rectangular and skew stiffened laminated composite plates with arbitrary orientation stiffener as not only variation of slenderness and aspect ratio of the plate but also variation of skew angle of skew stiffened plates.

A Study of damage behaviors of 3D orthogonal woven composite plates under Low velocity Impact (3D 직교 직물 복합재료 평판의 미시구조를 고려한 손상 거동 연구)

  • Ji, Kuk-Hyun;Yang, Jeong-Sik;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.53-56
    • /
    • 2005
  • In this study, the material characterization and the dynamic behavior of 3D orthogonal woven composite materials has been studied under transverse central low-velocity impact condition by means of the micromechanical model using finite elements. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is stacked in x-y-z direction repeatedly. First, the mechanical properties of 3D orthogonal woven composites arc obtained by means of virtual experiment using full scale Finite Element Analysis based on the DNS concepts, and the computed elastic properties arc validated by comparison to available experimental results. Second, using the implementation of this validated micromechanical model, 3D transient finite-clement analysis is performed considering contact and impact, and the impact behavior of 3D orthogonal woven composite is investigated. A comparison study with the homogenized model will be carried out in terms of global and local behaviors.

  • PDF

Thermal Buckling and Vibration Analysis of Composite Laminated Plates Using Shape Memory Alloy Fibers (형상기억합금 선을 삽입한 복합재료 적층판의 열적 좌굴 및 진동 해석)

  • 박재상;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.916-921
    • /
    • 2001
  • 형상기억합금 선(Shape Memory Alloy Fibers : SMA Fibers)을 삽입한 복합재료 평판의 고온 환경에서의 열적 좌굴 및 진동 해석을 유한요소법을 이용하여 수행하였다 1 차 전단변형이론을 적용하여 적층판을 모델링하였고, 온도 변화 효과는 적층판의 전 영역에서 균일한 온도 분포로 가정하였다. 형상기억합금 선의 온도에 대한 비선형 재료 성질을 고려하여 열적 좌굴 해석 수행 시 반복 계산법을 이용하였고, 자유 진동 해석에서는 시스템의 자유도를 줄이기 위하여 Guyan-Reduction(CR)을 사용하였다. 온도 변화와 형상기억합금 선의 체적비(volume fraction) 및 초기 변형률(initial strain) 변화에 따른 임계 온도와 고유 진동수의 특성을 해석하였다.

  • PDF

Morphing of Composite Plate Using SMA Actuator (형상기억합금 작동기를 이용한 복합재 평판의 형상변형)

  • 김상헌;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.146-149
    • /
    • 2003
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory alloy(SMA) concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite plates are considered as simple morphing structural components which are based on first order shear deformable laminated composite plate with large deflection. Numerical results of fully coupled SMA-composite structures are presented

  • PDF

The characteristics of Lamb waves in a composite plate with thickness variation (두께변화가 있는 복합재 평판의 램파 전파특성)

  • Han Jeongho;Kim Chun-Gon
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.46-51
    • /
    • 2005
  • An active inspection system using Lamb waves for structural health monitoring was considered in this paper. In order to understand the characteristics of the Lamb waves propagating in a composite plate, the experiment was performed for a quasi-isotropic composite plate with thickness variation. Lamb waves were generated and received by the thin PZT transducers bonded on the surface. In this test, a simple new technique was tried for characterizing the Lamb waves propagating across the discontinuity due to the thickness variation. The results showed that Lamb waves were more sensitive to the thinner plate with faster group velocity and that the thickness change in composite plate was detectable. Consequently, the potential of applying this technique to structural health monitoring was verified.

Acoustic Loads Reduction of Composite Plates for Nose Fairing Structure (노즈 페어링 구조용 복합재 평판의 음향 하중 저감 특성)

  • 박순홍;공철원;장영순;이영무
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.15-22
    • /
    • 2004
  • Acoustic load generated by rocket propulsion system is one of major dynamic loads during lift-off phase so that it causes the structural failure and electronic malfunction of payloads. Acoustic loads can be greatly reduced by an appropriate acoustical design of nose faring structures. This paper deals with the acoustical design of the nose fairing structure for launch vehicle. It is well known that a honeycomb sandwich structure is a poor sound insulator because of its high specific stiffness. In this paper, the sound transmission characteristics of four kinds of honeycomb structures for noise fairing were investigated by means of numerical and experimental ways. In order to estimate transmission loss, infinite plate theory by Moore and Lyon and statistical energy analysis (SEA) method were used. The predicted results showed a good agreement with measured ones. These enabled us to determine a proper core material for nose fairing, which shows good sound insulation performance per weight.