• Title/Summary/Keyword: 복합재료 판넬

Search Result 19, Processing Time 0.021 seconds

Low Velocity Impact Behavior of Aluminium and Glass-Fiber Honeycomb Structure (알루미늄과 유리섬유 하니컴 구조의 저속 충격 거동)

  • Kim, Jin Woo;Won, Cheon;Lee, Dong Woo;Kim, Byung Sun;Bae, Sung In;Song, Jung Il
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.116-122
    • /
    • 2013
  • In this study, impact behavior of aluminium and glass-fiber structure is studied under low impact velocity. Compression test is carried out to investigate the compressive strength of the specimens. The degree of damage is observed using microscopy and compared with the experimental analysis data. The maximum load capacity, impact strength and elastic energy of glass-fiber honeycomb sandwich panel are more than the aluminium honeycomb sandwich panel.

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.

Buckling Analysis of Composite Cylindrical Panels under Combined Loading of Constant Lateral Pressure and Incremental Compression (일정 횡하중과 증분 압축하중을 동시에 받는 복합적층 판넬의 좌굴 해석)

  • 최상민;김진호;권진회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.1-4
    • /
    • 2000
  • This paper addresses a modified arc-length method for the nonlinear finite element analysis of a structure which is loaded in incremental and fixed forces, simultaneously. The main idea of the method is to separate the displacement term by the constant force from that by the incremental force. As the illustrative examples of the applicability of the present algorithm, a parametric study is performed on the nonlinear buckling behavior of composite cylindrical panels under the combined load of the incremented compression and the constant lateral pressure.

  • PDF

Properties of Mechanical Joint by Carbon Fiber/Epoxy Sandwich Composite Panels (탄소섬유/Epoxy 샌드위치 복합재판넬의 기계적 취부특성평가)

  • Oh, K.;Lee, S.;Jeong, J.;Cho, S.;Kim, J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.121-124
    • /
    • 2005
  • This paper was about experimental test properties by mechnical joint of CF1263/Epoxy Al honeycomb panels. In case of mechanical joint using screw, nut shall be secured over than minimize third screw pitch. In case of insert backsheet for increase of joint force, increase weight for assemble by screw pitch. In case of insert backsheet with CF1263/Epoxy, predominant save weight and minimazer of displacement by tensile weight moreover predominant strength. In case of mechanical joint by rivet, rivet of Monobolt has over-hole in hole of CF1263/Epoxy but rivet of PROTRUDING has predominant of mechanical joint.

  • PDF

Strength Assessment of 8m-class High-Speed Planing Leisure Boat (8m급 고속 활주선형 레저보트의 구조강도 평가)

  • Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.418-423
    • /
    • 2018
  • Recently, research and development of high-value leisure vessels has been carried out in Korea to revitalize the marine leisure industry and tap into the global maritime leisure market. FRP composite materials, which have excellent physical properties and are available for the manufacture of light hulls, are used widely. One of the most important design technologies is to secure structural safety of leisure vessels made from FRP composite materials. In this study, the structural strength was assessed for the design of an 8-meter high-speed planing leisure boat made from FRP composite materials. The design loads to verify the structural safety were calculated according to the rules for the classification of high speed light craft (KR, 2015), and structural analysis was conducted using a finite element model composed of an isotropic shell element, which has equivalent bending rigidity with the FRP sandwich panel. The analysis results were compared with the results of the strength test for fabricated specimens, and all internal structural components are sufficiently satisfied with the structural strength.

Bondline Strength Evaluation of Honeycomb Sandwich Panel For Cure Process and Moisture Absorption (경화공정 및 수분흡수에 따른 복합재료 하니콤 샌드위치 판넬의 접합강도특성 연구)

  • Choe, Heung-Seop;Jeon, Heung-Jae;Nam, Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.115-126
    • /
    • 2001
  • In this paper, through a series of comparative experiments, effects of two different cure processing methods, cocure and precure, on the mechanical properties of honeycomb core materials for aircraft applications are considered. Mass of moisture accumulated into the closed cells of the sandwich panel specimen from the measured mass of moisture diffused to the full saturation state into the elements(skin, adhesive layer, Nomex honeycomb), consisting the honeycomb sandwich specimen has been calculated. Water reservoir of 70$\^{C}$ was used to have specimens absorb moisture to see the influence of moisture absorbed into sandwich panel on its mechanical properties. For the repair condition holding for 2 hours at 177$\^{C}$(350℉) temperature, a pressure due to the vapor expansion in each cell of the sandwich panel, which may result in the local separation of the interface between laminated skin and the surface of the honeycomb, has been estimated by vapor pressure-temperature relation from the thermodynamic steam table and compared to the pressure from the ideal gas state equation. The bonding strengths of the laminated skins on the flat surface of the Nomex honeycomb have been compared by the flatwise tension test and climbing drum peel test performed at room temperature for dry, wet and wet-repair specimens, respectively.

Strength and Impact Damage Characteristics of A17075/CFRP Sandwitch Pannel by Using Automobiles (자동차용 경량화 A17075 / CFRP 샌드위치 판넬의 강도와 충격손상 특성)

  • Yoon, Han-Ki;Lee, Jong-Ho;Park, Yi-Hyun;Lee, Je-Heon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.295-300
    • /
    • 2002
  • To establish an optimum condition in the surface treatment and curing process will be an important parameters for the fabrication of multilayered hybrid composite materials, A17075/CFRP (CARALL : carbon fiber reinforce aluminum laminates). Effects of carbon fiber direction and thickness variation in tensile strength were investigated. And impact damage behavior of carbon fiber reinforce plastic (CFRP) and CARALL were investigated also, it was found that a partial stress increase in order of epoxy adhesive, A17075, CFRP. And the partial stress of CFRP carried out a great portion of applied stress. The impact damage resistance of CARALL was higher than that of CFRP. This is because both side Al sheet of CARALL absorb a great of impact damage.

  • PDF

An Experimental Study on the Failure of a Novel Composite Sandwich Structure (새로운 형상의 복합재 샌드위치 체결부 구조의 파손거동 연구)

  • Kwak, Byeong-Su;Kim, Hong-Il;Dong, Seung-Jin;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.209-215
    • /
    • 2016
  • The failure of composite sandwich structures with thickness and material variation was studied. The main body of the structure is sandwich plate made of the carbon composite face and Aluminum honeycomb core. It is connected with composite laminated flange without core through transition region of tapered sandwich panel with foam core. Tension and compression tests were conducted for the total of 6 panels, 3 for each. Test results showed that the panels under compression are vulnerable to the face failure along the material discontinuity line between two different cores. However the failure load of which panel does not show such failure can carry 16% more load and fails in honeycomb core and face debonding. For the tensile load, the extensive delamination failure was observed at the corner radius which connects the panel and the flange. The average failure load for compression is about 7 times the tensile failure load. Accordingly, these sandwich structures should be applied to the components that endure the compressive loadings.

Mechanical Characteristics of 3-dimensional Woven Composite Stiffened Panel (3차원으로 직조된 복합재 보강 패널의 기계적 특성 연구)

  • Jeong, Jae-Hyeong;Hong, So-Mang;Byun, Joon-Hyung;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, a composite stiffened panel was fabricated using a three-dimensional weaving method that can reduce the risk of delamination, and mechanical properties such as buckling load and natural frequency were investigated. The preform of the stringer and skin of the stiffened panel were fabricated in one piece using T800 grade carbon fiber and then, resin (EP2400) was injected into the preform. The compression test and natural frequency measurement were performed for the stiffened panel, and the results were compared with the finite element analyses. In order to compare the performance of 3D weaving structures, the stiffened panels with the same configuration were fabricated using UD and 2D plain weave (fabric) prepregs. Compared to the tested buckling load of the 3D woven panel, the buckling loads of the stiffened panels of UD prepreg and 2D plain weave exhibited +20% and -3% differences, respectively. From this study, it was confirmed that the buckling load of the stiffened panel manufactured by 3D weaving method was lower than that of the UD prepreg panel, but showed a slightly higher value than that of the 2D plain weave panel.