• Title/Summary/Keyword: 복합재료 판넬

Search Result 19, Processing Time 0.029 seconds

Evaluation on Adiabatic Property for Vehicular Sandwich Composite Structure (차체 구조용 샌드위치 복합소재 단열 특성 평가)

  • Lee Sang Jin;Oh Kyung Won;Jeong Jong Cheol;Kong Chang duk;Kim Jeong Seok;Cho Se Hyun
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Experimental investigation on heat transfer ratio was firstly performed with three types of sandwich panels such as the Carbon/Epoxy Skin-Aluminum Honeycomb and Balsa Core Sandwich Panel of 37mm thickness, the Carbon/Epoxy Aluminum Skin-Honeycomb Core Sandwich Panel of 57mm thickness (including insulator) and the Carbon/Epoxy Skin-Aluminum Honeycomb Core Sandwich Panel of 37mm thickness based on the KS F 2278:2003(Insulation test method of windows). In additional to this investigation, experimental tests were also done for evaluation of heat transportation ratio with the Aluminum Skin- Aluminium Honeycomb Sandwich Panels of 27mm and 35mm thickness, and Aluminum Skin-Foaming Aluminum Sandwich Panel of 27mm thickness by the KS F2277:2002 (Insulation measuring method of construction component-Calibration heat box method or protective heat box method). In this study, it was found that the larger net heat transfer cross sectional area between the skin and the sandwich core is given, the higher heat transportation ratio occurs. It was also found that the hybrid type insulation had better insulation characteristics compared to the non-hybrid type insulation.

Postbuckling Analysis of laminated composite-stringer stiffened-Curved panels Loaded in Local compression. (국부 압축력을 받는 스트링거 보강 복합적층 만곡 판넬의 좌굴후 거동해석)

  • 김조권
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • In this paper, postbuckling behavior of laminated composite-stringer stiffened-curved panels loaded in local compression is analyzed using the finite element program developed. Postbuckling Analysis is performed in dividing the panel behavior into three basic parts. The eight node degenerated shell element is used in modelling both panel and stiffeners, and the updated Lagrangian description method based on the 2nd Piola-Kirchhoff stress tensor and the Green strain tensor is used for the nonlinear finite element formulation. The progressive failure analysis is adopted in order to grasp the failure characteristics. The postbuckling experiment of the laminated composite-stiffened-curved panel had been done to verify the finite element analysis. The buckling load and the postbuckling ultimate load are compared in parametric study.

  • PDF

Postbuckling Analysis of Composite Curved Panels under Lateral Loading (횡하중을 받는 복합재 원통판넬의 후좌굴 해석)

  • Choi, Soo-Young;Son, Hee-Jin;Kweon, Jin-Hee;Choi, Jin-Ho;Cho, Jong-Rae
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.272-275
    • /
    • 2005
  • The postbuckling analysis of composite curved panels subjected to lateral loading was conducted by a nonlinear finite clement program, ACOS. Two kinds of graphite/epoxy composite materials, URN300 and USN 125 were tested to verify the finite element analysis. High stiffness composite material, URN300 curved panels showed the critical failure prior to initial buckling. On the contrary USN 125 curved panels showd no severe damage after snap-through. In both panels, the finite element and experimental results showed good agreement.

  • PDF

Design and Fabrication of Composite Sandwich Payload Platform and Strut Tubes for Satellite Main Body Structures (인공위성 본체 복합재료 샌드위치 플랫폼 및 튜브 스트럿 구조물의 설계 및 제작)

  • Roh, Hui-Seok;Choi, Heung-Seop;Ha, Jae-Seon;Son, Won-Gi;Kim, Cheol;Lee, Ju-Hun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.228-232
    • /
    • 2002
  • 본 연구에서는 다목적 실용위성 2호기에 적용된 금속 구조물 중 알루미늄 샌드위치 패널 구조인 탑재체 플랫폼과 튜브 스트럿(tube strut) 구조에 복합재료 응용기술을 적용하였다. 복합재료 구조로의 대체 설계에서도 관성하중 및 음향진동등과 같은 극심한 발사환경과 더불어 운용하게 될 우주 열환경을 고려하였다. 연구의 목적은 금속소재보다 비강도, 비강성이 우수한 복합재료를 위성 구조물에 사용함으로써 무게를 경량화함에 있다.

  • PDF

Finite Element Modelling of Axially Compressed GFRP Cylindrical Panels (축방향으로 압축을 받는 GFRP 원통형 판넬의 유한요소 모델링)

  • Kim, Ki Du
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.15-25
    • /
    • 1993
  • In order to promote the efficient use of composite materials, effort is currently being directed at the development of design criteria for composite structures. Insofar as design against buckling is concerned, it is well known that, for metal shells, a key step is the definition of 'knockdown' factors on the elastic critical buckling stress accounting mainly for the influence of initial geometric imperfections. At present, the imperfection sensitivity of composite shells has not been explored in detail. Due to the large number of parameters influencing buckling response (considerably larger than for isotropic shells), a very large number of tests would be needed to quantify imperfection sensitivity experimentally. An alternative approach is to use validated numerical models for this task. Thus, the objective of this paper is to outline the underlying theory used in developing a composite shell element and to present results from a validation exercise and subsequently from a parametric study on axially loaded glass fibre-reinforced plastic (GFRP) curved panels using finite element modelling. Both eigenvalue and incremental analyses are performed, the latter including the effect of initial geometric imperfection shape and amplitude, and the results are used to estimate 'knockdown' factors for such panels.

  • PDF

Microstrip Antenna for SAR Applications with Microwave Composite Laminates and Honeycomb Cores (복합재료 하니콤 샌드위치 판넬을 이용한 SAR 시스템용 마이크로스트립 안테나 개발)

  • 유치상;이라미;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.195-198
    • /
    • 2000
  • Microstrip antenna for SAR applications is designed with microwave composite laminates and Nomex honeycomb cores, which becomes an aircraft's structural panel. This study demonstrated fabrication, design procedures and structural and electrical performances of complex antenna system presented. For validating structural rigidity, 3-point bending test is performed, and simulation results for the complex antenna array are compared with measurements for its electrical performance. The results show that this antenna system can be applied in dual polarized synthetic aperture radar and has a good flexural stiffness with comparison of previous sandwich constructions.

  • PDF

Analysis of a Composite Panel with Transverse Matrix Cracks under Bending and Twisting Moments (굽힘 및 비틀림 하중작용시 횡방향 모재균열을 갖는 복합재료 판넬 해석)

  • Park, Jung-Sun;Hur, Hae-Kyu;Lee, Soo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.971-980
    • /
    • 1997
  • This study is to investigate the stiffness degradation of a composite laminated panel including transverse matrix cracks subjected to bending and twisting moments. Micromechanics theory on the composite material is derived by introducing crack density. Iterative numerical scheme is developed to calculate the degraded composite stiffness which has nonlinear relation due to the crack density. The finite element method is used for structural analysis of the composite panel. Structural responses of the composite panel are examined for various laminated angles and crack density under the bending and twisting moments. Also, the effect of crack opening and closing is considered in the examination. It is realized that the matrix cracks may cause severe stiffness reduction and should be considered in the composite laminated panel.

Low-velocity Impact Behavior of Aluminum Honeycomb Sandwich Panel (알루미늄 하니컴 샌드위치 판넬의 저속충격거동)

  • 이현석;배성인;함경춘;한경섭;송정일
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.78-82
    • /
    • 2001
  • Impact behaviors of Aluminum Honeycombs Sandwich Panel(AHSP) by drop weight test were investigated. Two types of specimens with 1/2" and 1/4" cell size were tested by two impactors which are weight of $5.25\textrm{kg}_{\textrm{f}}$ and $11.9\textrm{kg}_{\textrm{f}}$. Parametric studies were achieved including the impactor weight and impact sites which consist face, long-edge, short-edge, and point of the specimen. Face one of impact sites was the strongest and short-edge one of impact sites was the weakest. The damaged area of AHSP was enlarged with the increase of impactor weight that is equal to impact energy. After 3 point bending test, fracture modes of AHSP were analyzed with AE counts. Lower facesheet was fractured in the long-edge direction and then separated between facesheet and core. In the short-edge direction after core wrinkled, lower facesheet tear occurred. Impact behavior by FE analysis were increased localized damage in fast velocity because the faster velocity of the impact was, the smaller the stress of core was. Consequently, impactor weight had an effect on widely damaged area, while the impact velocity was caused on the localized damaged area.aged area.

  • PDF