• 제목/요약/키워드: 복합용사

검색결과 67건 처리시간 0.019초

용사법에 의해 제조된 Al/SiC 복합재료의 마모거동 (2) - 작용하중의 영향 - (Wear Behavior of Al/SiC Composites Fabricated by Thermal Spray Process (2) - Effect of Applied Load on Wear Behavior -)

  • 이광진;김균택;김영식
    • Tribology and Lubricants
    • /
    • 제29권5호
    • /
    • pp.298-303
    • /
    • 2013
  • In this work, the effect of applied load on the wear behavior of Al/SiC composites was studied. Al/SiC composites were fabricated following the thermal spray process. Dry sliding wear tests were performed on these composites under four different applied loads, i.e., 5, 10, 15, and 20 N. The wear behaviors of the composites under these applied loads were investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Under applied loads of up to 15 N, the wear rates of Al/SiC composites decreased with an increase in the applied load because of the formation of an adhesion layer on the worn surface. However in the case of an applied load of 20 N, the wear rate was significantly high because the formation and fracture of the adhesion layer were repeated continuously. These results show that the wear behaviors of the tested composites are significantly influenced owing to the applied loads.

$Al_2O_3$세라믹 용사피막의 특성개선에 관한 연구 (A Study on the Improvement of Properties of Sprayed $Al_2O_3$ Ceramic Coating Layer.)

  • 김정일;이주원;최영국;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.49-58
    • /
    • 2000
  • Thermal spraying is one of the most common surface coating techniques to be used for many applications and flame spraying covers a wide range of different materials which can be coated onto various substrates. The purpose of this study is to investigate the effects of mixed ratio in composite coatings on the mechanical and anti-corrosion properties. The five different types of composite coatings were made with $Al_2O_3$ ceramic and Ni-alloy powder on the mild steel substrate by flame spraying method. The mechanical properties such as microhardness, adhesive strength and erosion resistance and corrosion resistance were tested for the sprayed coating specimens. The results obtained are summarized as follows; 1. The composite coating layers greatly improve the microstructure, erosion resistance and adhesive strength by increasing the content of Ni-Al alloy. 2. Microhardness of the compsite coating layer is decreased by increasing the content of Ni-Al alloy. 3. The anti-corrosion properties is considerably improved by increasing the compsite rate of Ni-Al alloy.

  • PDF

용사법에 의해 제조된 $Al/Al_2O_3$ 복합재료의 상대재에 따른 마모특성 (Wear Properties of Thermal Sprayed Al-based Metal Matrix Composites Against Different Counterparts)

  • 김균택;김영식
    • 동력기계공학회지
    • /
    • 제12권3호
    • /
    • pp.60-65
    • /
    • 2008
  • This study aims at investigating the wear properties of thermally sprayed $Al/Al_2O_3$ metal matrix composite(MMC) coating against different counterparts. $Al/Al_2O_3$ MMC coatings were fabricated using a flame spray system on an Al 6061 substrate. Dry sliding wear tests were performed using the sliding speeds of 0.2m/s and the applied loads of 1 and 2 N. AISI 52100, $Al_2O_3$, $Si_3N_4\;and\;ZrO_2$ balls(diameter: 8mm) were used as counterpart materials. Wear properties of $Al/Al_2O_3$ MMC coatings were analyzed using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear properties of $Al/Al_2O_3$ composite coatings were much influenced by counterpart materials. In the case of AISI 52100 used as counterparts, the wear rate of composites coating layer increased according to the increase of the applied load. On the contrary, in the case of ceramics used as counterparts, the wear rate of composites coating layer decreased according to the increase of the applied load.

  • PDF

Cu-Ti합금의 침투에 의한 $Al_2O_3$ 세라믹 용사층의 복합화 (Infiltration of the Cu-Ti Alloys to Porous $Al_2O_3$ Ceramic Coating)

  • 이형근;김대훈;황선효
    • Journal of Welding and Joining
    • /
    • 제10권4호
    • /
    • pp.213-221
    • /
    • 1992
  • Al$_{2}$O$_{3}$ ceramic coating layer by gas flame spraying was very porous, therefore it could not have wear and corrosion resistance at all. To get a dense and strong coating layer, a method to infiltrate an alloy into the pores of $Al_{2}$O$_{3}$ ceramic coating was investigated. Cu-Ti alloys, which had good wettability and reactivity with $Al_{2}$O$_{3}$ ceramic, were examined for infiltration. Infiltration of the alloys was performed in vacuum at 1100.deg.C. The melt of Cu-50 at % Ti alloy was well penetrated through the porous $Al_{2}$O$_{3}$ coating and tightly sealed the pores, unbounded area and microcracks in the coating. The alloy melt in the pores reacted with $Al_{2}$O$_{3}$ ceramic to produce a suboxide phase, Cu$_{2}$Ti$_{4}$O. This composite layer which was composed of $Al_{2}$O$_{3}$ and Cu$_{2}$Ti$_{4}$O phase had good microstructure and wear and corrosion resistance. Additionally, microstructures at interfaces between coating layers were greatly improved owing to the effect of vacuum heat treating.

  • PDF

용사법과 레이저 용접을 이용한 복합소재 미세필터 연구 (A study on ceramic and metal composite material joining for micro filter using thermal spray and laser welding)

  • 송인규;최해운;김주한;윤봉한;박중언
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.32-38
    • /
    • 2010
  • Hybrid material(ceramic+metal) processes were developed for micro filter using ceramics coating at metal filter surface by thermal spray method, micro hole drilling at ceramic coated filter surface by femtosecond laser, and fiber laser direct welding of ceramic and metal (SUS304, SM45C) by capillary effect. Thermal spray process was used for ceramic powders and metal filters. The used ceramic powders were $Al_2O_3+40TiO_2$(Metco 131VF) powder of maximum particle size $5{\mu}m$ and ${Al_2O_3}99+$(Metco 54NS) power of maximum particle size 45m. Ceramic coated filters using thermal spray method had a great influence on powder material, particle size and coating thickness but had a fine performance as a micro filter. CW fiber laser was used to drill the top ceramic layer and melt the bottom metal layer for joining applications.

  • PDF

플라즈마/레이저 복합용사에 의한 $ZrO_2-8%Y_2O_3$ 코팅층의 미세구조 및 기계적 특성 (Microstructures and Mechanical Properties of $ZrO_2-8%Y_2O_3$ Coating Layer by Plasma/Laser Complex Spraying)

  • 김영식;오명석
    • 동력기계공학회지
    • /
    • 제4권4호
    • /
    • pp.48-53
    • /
    • 2000
  • This study was aimed at observing the influence of laser irradiation on a $ZrO_2-8%Y_2O_3$ ceramic coating layer fabricated by plasma spraying. The $ZrO_2-8%Y_2O_3$ ceramic powder was plasma sprayed onto SS400 carbon steel substrate and laser irradiated on the coating layer under various conditions of laser power and beam diameters. As to the as-sprayed specimen and laser-treated specimen, a hardness test and a microstructure analysis were performed. Hardness was measured by a microhardness tester; microstructure was observed by an optical microscope and a scanning electron microscope. The result was that the microstructure of the laser-irradiated coating layer was dense; porosities almost disappeared and hardness increased. It was also observed that microcracks occured in the laser-irradiated coating layer.

  • PDF

용사법에 의해 제조된 Al/SiC 복합재료의 마모거동 (1) - 미끄럼 속도의 영향 - (Wear Behavior of Al/SiC Composites Fabricated by Thermal Spray Process (1) - Effect of Sliding Speed on Wear Behavior -)

  • 이광진;김균택;김영식
    • Tribology and Lubricants
    • /
    • 제27권6호
    • /
    • pp.351-355
    • /
    • 2011
  • Al/SiC composites were fabricated by thermal spray process, and the dry sliding wear tests were performed using the various sliding speed of 10, 30, 60 and 90 RPM through 1000 cycles. The applied load was 10 N and radius of wear track was 15 mm. Wear tracks on the Al/SiC composites were investigated using scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS). In the case of sliding speed of 10 RPM, adhesive wear behavior caused by plastic deformation of composits surface was observed. In the cases of sliding speed of 30, 60, 90 RPM, abrasive wear behavior on the adhered layer formed by debris were observed. Through this study, it was found that the wear behavior of Al/SiC composites was mainly influenced by the sliding speed.

플라즈마 용사방식에 의해 형성된 페라이트-탄화규소 표면층의 마이크로파 흡수 특성(II) (Microwave Absorbing Characteristics of Ferrite-silicon carbide surface Films Produced)

  • 신동찬;손현
    • 한국통신학회논문지
    • /
    • 제18권8호
    • /
    • pp.1169-1175
    • /
    • 1993
  • 레이다의 추적 및 탐색으로 부터 비행 물체를 보호하기 위한 목적으로, 알루미늄 합금표면에 페라이트-탄화규소 복합물인 마이크로파 흡수층을 플라즈마 용사방식으로 제작하였다. 본 논문에서는 페라이트-탄화규소층(I) 제조시 사용했던 탄화규소 입자의 평균크기인 34[rm]대신에15[rm]가 사용되었으며, 플라즈마 용사변수들 중에서 분말의 공급비율은 70[Kg/h]대신에 50[Kg/h] 그리고, 용사거리는 80[mm[ 대신에 100[mm]가 사용 되었다. X-band(8~12.4(GHz)레이다용 페라이트-탄화규소 전자파 흡수체를 실험적으로 설계하고 시험제작하여 전기적 특성을 평가한 결과, -lOdB의 반사량을 허용한도로 했을 때 약 2.8%의 대역폭이 얻어졌으며, 최대 흡수두께는 0.5(mm)로 매우 양호한 박층형 전자파 흡수체가 얻어졌다.

  • PDF

분무건조법에 의한 용사용 WC-17%Co 복합분말제조 및 HVOF(High Velocity Oxy-Fuel) 용사특성 (Fabrication of WC-17%Co Composite Powder for Thermal Spray by Spray-Drying Method and HVOF Thermal Spray Characteristics)

  • 설동욱;김병희;임영우;정민석;서동수
    • Journal of Welding and Joining
    • /
    • 제14권6호
    • /
    • pp.101-108
    • /
    • 1996
  • In this study, WC-l7wt% Co composite powder for thermal spray was fabricated by spray drying method. The agglomerated composite powder had spheroidal morphology and the particle size distribution was 20~60${\mu}{\textrm}{m}$. WC and Co were distributed homogeneously. However, the strength of the spray-dried agglomerate was low due to the pores within the agglomerate. Therefore, the spray-dried agglomerate was broken down during HVOF thermal spray and the microstructure was inhomogeneous with many pores within the coating layer. And the decomposition of WC to W and $W_{6}$ $C_{2.54}$ was accelerated. The strength and flowability of the agglomerate were greatly improved by sintering heat treatment(110$0^{\circ}C$, 1 hour, hi atmosphere), and then the coating layer showed dense and homogeneous microstructure with well-developed splats. The hardness of the coating layer was H $v_{300}$ = 1072.2.2.

  • PDF