• Title/Summary/Keyword: 복합소재 프로펠러

Search Result 3, Processing Time 0.018 seconds

A Study on Low-noise Propeller Shape Design using Composite Material Molding Method (복합소재 성형공법을 이용한 저소음 프로펠러 형상 설계에 관한 연구)

  • Ungjin Oh;Jin-Taek Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Recently, the paradigm of the aircraft industry, not only domestically but also globally, has been changing significantly starting with the era of the Fourth Industrial Revolution. With the convergence of new technologies such as ICT and AI, the drone market, centered around the military, is expanding its overall services to include the civilian market. Additionally, drones operate by being equipped with batteries, and for product lines that use batteries, lightening the product is one of the critical factors. This is because the lighter the aircraft, the less battery consumption and maximum efficiency. Therefore, recently, composite materials have been used to reduce the weight of the aircraft. To not only reduce weight but also achieve high functionality, it is being applied to most areas such as propellers, airframes, interior materials, floor plates, driving devices, and battery housings, and is emerging as a core technology. In this paper will utilize ceramic fiber composite materials, which have recently emerged for lightweight. It aims to improve noise and strength by targeting propellers, one of the most important factors in drones. In addition, the performance of the propeller developed through the low-noise design will be verified.

Numerical Analysis of Orthotropic Composite Propellers (직교이방성 복합소재 프로펠러 수치해석)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Ruy, Won-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.377-386
    • /
    • 2019
  • Flexible composite propellers have a relatively large deformation under heavy loading conditions. Thus, it is necessary to accurately predict the deformation of the blade through a fluid-structure interaction analysis. In this work, we present an LST-FEM method to predict the deformation of a flexible composite propeller. Here, we adopt an FEM solver called OOFEM to carry out a structural analysis with an orthotropic linear elastic composite material. In addition, we examine the influence of the lamination direction on the deformation of the flexible composite propeller.

Design of Flexible Composite Propellers considering Fluid-structure Interaction (유체-구조 연성 효과를 고려한 복합소재 유연 프로펠러의 설계)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Kim, Gun-Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.61-69
    • /
    • 2020
  • Due to its flexibility of the composite propeller blade, it is necessary to design a shape capable of generating a desired load at a design point in consideration of the shape change of the propeller. In order to design it, we need to evaluate not only the hydrodynamic force around it, but also its structural response of flexible propeller according to its deformation. So, it is necessary to develop a design tool to predict the hydroelastic performance of a flexible propeller with deformation considering fluid-structure interaction and special operating conditions. Finally a design optimization tool for flexible propellermade of CFRP is required. In this study, a design methodology of the specific flexible composite propeller is suggested, considering fluid-structural interaction analysis of the specific flexible propeller.