• Title/Summary/Keyword: 복합분포

Search Result 1,219, Processing Time 0.029 seconds

Probability Analysis for Impact Behavior of Composite Laminates Subjected to Low-Velocity Impact (저속충격을 받는 복합적층판의 충격거동에 대한 확률분포 특성)

  • Ha, Seung-Chul;Kim, In-Gul;Lee, Seok-Je;Cho, Sang-Gyu;Jang, Moon-Ho;Choi, Ik-Hyeon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.18-22
    • /
    • 2009
  • In this paper, we examined impact force and impact behavior through low velocity impact tests of composite laminates. And through c-scan as nondestructive inspection, explored the damaged area being difficult to examine with the visual inspection. Through CAI tests, we also measured the compression strength of composite laminates subjected to low velocity impact. To examine the characteristics of impact behavior measured from low velocity impact test, nondestructive inspection, and CAI test, the simulated data are generated from the test data using Monte-Carlo simulation, then represented it by probability distribution. The testing results using visible stochastic distribution were examined and compared.

다축경편 복합재료 평판에서 기계적 체결시 발생하는 원공 주위의 응력분포

  • 최재민;조민규;전흥재;변준형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.56-56
    • /
    • 2004
  • 섬유강화 복합재료는 응용범위가 산업계 전반으로 빠르게 확대되고 있다. 개발 초기에는 하중을 감당하지 않는 이차 구조물에 주로 사용되어 왔으나, 점차 산업 전반의 I차 구조물(Primary Structure)에 쓰이는 등, 그 사용범위가 넓어지고 있으며, 취약한 두께방향 물성 향상의 필요성을 충족시키기 위해 다축경편(MWK) 복합재료에 대한 연구가 진행되고 있다. 본 논문에서는 다축경편(MWK) 복합재료의 기계적 체결부에 관한 응력해석을 연구하였다.(중략)

  • PDF

Preparation and Properties of Charged Microcapsule (하전 마이크로캡슐 입자의 제조와 성질)

  • Park, Soo-Min;Kim, Ye-Jeong;Kim, Hea-In;Kim, Chul-Am;Suh, Kyung-Soo
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.71-71
    • /
    • 2011
  • 전류를 흘렸을 때 양극과 음극에 따라 움직이는 미세한 나노입자를 이용하여 색, 글자, 그림 등을 표시하는 응용디스플레이 기술이 전기영동디스플레이(electrophoretic display)이다. 최근 전자종이 등 상품화가 진행되면서 전기영동디스플레이에 대한 관심증대와 함께 기술개발이 지속적으로 진행되고 있다. 본 연구에서는 분산중합을 이용하여 $TiO_2$ core 입자에 polystyrene을 shell로 코팅하여 마이크로캡슐형의 전기영동디스플레이에 적합한 입자를 제조하고 성능을 분석하였다. 먼저 분산제의 종류, 모노머의 농도, 개시제의 농도에 따라 제조된 대전복합입자의 크기 및 분포를 보면, 분산제의 종류를 달리 하였을때를 제외하고 대체로 균일하였다. 입경의 변화를 보면, 약 200-300nm의 $TiO_2$가 개질에 의해 400-500nm의 입경을 나타내는 것으로부터 200nm 두께의 shell층을 갖는다는 것을 확인 할 수 있었다. 또한 분산제의 종류에 따라서는 분산제를 사용하지 않는 경우가 오히려 제조된 입자의 분포가 균일함을 알 수 있었고 모노머의 농도에 따른 변화는 볼 수 없었으며 입경분포가 균일한 입자가 제조되었음을 알 수 있었다. 대전복합입자의 TGA 곡선으로부터 $300^{\circ}C$ 부근에서 polystrene shell에 의한 분해를 볼 수 있었고 $600^{\circ}C$ 이후에 잔류된 core의 $TiO_2$ 입자를 확인 할 수 있었다. 이 결과로부터 $TiO_2$ core-polystyrene shell형의 전자 종이용 대전복합입자의 제조를 확인 할 수 있었다. 또한 제조된 대전복합입자의 zeta potential을 보면, (+)전하를 띄며 64.8mV의 비교적 높은 zeta potential을 가지는 것을 확인 할 수 있었다. 그리고 $TiO_2$ 대전복합입자와 같은 방법으로 제조된 흑색 대전복합입자를 혼합하여 cell test를 측정한 결과, cell에 ${\pm}$10V의 저전압을 가했을 때에도 비교적 응답속도가 빠른 입자의 구동현상을 확인 할 수 있었다.

  • PDF

Evaluation of Statistical Fatigue Life of Hybrid Composite Joints in Low-Floor Bus (저상버스용 하이브리드 복합재 조인트부의 통계적 피로수명평가)

  • Jung, Dal-Woo;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1705-1713
    • /
    • 2010
  • The reliable fatigue life for hybrid composite joint structures was estimated by a statistical method for evaluating fatigue life; the results of the fatigue test varied widely. Cyclic bending tests were performed on a cantilever beam with a hybrid composite joint, which was developed for the body of a low-floor bus. In order to estimate the fatigue life of the hybrid composite joint structure by comparing the data obtained during the fatigue tests, the most suitable probabilistic density function among the normal, lognormal, and Weibull distributions was selected. The probabilistic-stress-life (P-S-N) curves calculated by using the selected Weibull distribution was suggested for process of statistical fatigue life estimation and reliability design.

Strain Transmission Ratio of a Distributed Optical Fiber Sensor with a Coating Layer (코팅된 분포형 광섬유 센서의 변형률 전달률)

  • Yoon, S.Y.;Kown, I.B.;Yu, H.S.;Kim, E.
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.429-434
    • /
    • 2018
  • We investigate strain transmissions of a surface bonded distributed optical fiber sensor considering strain variation according to positions. We first derive a strain transmission ratio depending on a wavelength of a strain distribution of the host structure from an analysis model. The strain transmission ratio is compared with numerical results obtained from the finite element method using ABAQUS. We find that the analytical results agree well with the numerical results. The strain transmission ratio is a function of a wavelength, i.e. the strain transmission ratio decreases (increases) as the wavelength of the host strain decreases (increases). Therefore, if an arbitrary strain distribution containing various wavelengths is given to a host structure, a distorted strain distribution will be observed in the distributed optical fiber sensor compare to that of the host structure, because each wavelength shows different strain transmission ratio. The strain transmission ratio derived in this study will be useful for accurately identifying the host strain distribution based on the signal of a distributed optical fiber sensor.

Material Topology Optimization of FGMs using Homogenization and Linear Interpolation Methods (균질화 및 선형보간법을 이용한 기능경사 내열복합재의 물성분포 최적설계)

  • 조진래;박형종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.495-503
    • /
    • 2001
  • In a functionally graded materials(FGM), two constituent material particles are mixed up according to a specific volume fraction distribution so that its thermoelastic behavior is definitely characterized by such a material composition distribution. Therefore, the designer should determine the most suitable volume fraction distribution in order to design a FGM that optimally meets the desired performance against the given constraints. In this paper, we address a numerical optimization procedure, with employing interior penalty function method(IPFM) and FDM, for optimizing 2D volume fractions of heat-resisting FGMs composed of metal and ceramic. We discretize a FGM domain into finite number of homogenized rectangular cells of single design variable in order for the optimization efficiency. However, after the optimization process, we interpolate the discontinuous volume fraction with globally continuous bilinear function in order to enforce the continuity of volume fraction distributions.

  • PDF

Statistical Distribution of Fatigue Life of Composite Materials for Small Wind-Turbine Blades (소형풍력발전 블레이드용 복합재료의 피로수명 분포에 대한 확률론적 평가)

  • Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1281-1289
    • /
    • 2011
  • This paper deals with several statistical distribution functions for the analysis of fatigue life data of composite laminates for small wind-turbine blades. A series of tensile tests was performed on triaxial glass/epoxy laminates for loading directions of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$. Then, fatigue tests were carried out to determine the fatigue life at the aforementioned loading directions and the fatigue stresses at four levels. Two-parameter Weibull, three-parameter Weibull, normal, and log-normal distributions were used to fit the fatigue life data of the triaxial composite laminates. The three-parameter Weibull distribution most accurately described the fatigue life data measured experimentally for all the cases considered. Furthermore, the variation of fatigue life was simultaneously affected by the loading direction and fatigue stress level.

Probabilistic Approach for Fatigue Life of Composite Materials with Impact-Induced Damage (충격손상 복합재료의 피로수명에 대한 통계적 해석 연구)

  • Kang, Ki-Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3148-3154
    • /
    • 2010
  • This paper presents the probabilistic analysis for fatigue life of Glass/Epoxy laminates with impact-induced damage. For this, a series of impact tests were perfomed on the Glass/Epoxy laminates using instrumented impact testing machine. Then, tensile and fatigue tests carried out so as to generate post-impact residual strength and fatigue life. Two Parameter Weibull distribution was used to fit the residual strength and fatigue life data of Glass/Epoxy composite laminates. The residual strength was affected by impact energy and their variance decreased with increasing of impact energy. The fatigue life of impacted laminates was greatly reduced by impact energy and this trend depended on applied stress amplitude. Additionally, the variation of fatigue life was gradually decreased with the applied stress amplitude.

Effects of Enzyme Treatment in Steeping Process on Physicochemical Properties of Wet-Milled Rice Flour (효소 전처리에 의한 습식제분 쌀가루의 이화학적 특성)

  • Kim, Rae-Young;Park, Jae-Hee;Kim, Chang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.9
    • /
    • pp.1300-1306
    • /
    • 2011
  • This study investigated the physicochemical characteristics of wet-milled rice flour treated with pectinase and cellulase in a steeping process. Enzyme treatments were used as follows: pectinase 0.05%, cellulase 0.05%, and mixed enzyme treatments 0.05~0.2%. For particle distribution, rice flour E-treated with mixed enzymes (pectinase 0.05% and cellulase 0.05%) was the finest at 48.3% particle distribution less than $53\;{\mu}m$. Protein contents and damaged starch were reduced by enzyme treatments. Damaged starch was the lowest (12.1%) in rice flour E compared with non-enzyme treatment (18.1%). Amylose content, water binding capacity, solubility, and swelling power all increased upon enzyme treatments, and their effects increased upon mixed enzyme treatment. For gelatinization characteristics of RVA, peak viscosity, final viscosity, breakdown, and total setback viscosity increased in rice flours treated with mixed enzymes. Especially, in steeping method with mixed enzyme treatment, pectinase 0.05% and cellulase 0.05% treatment was suitable for minimizing damaged starch and high fine particle distribution of rice flours compared with single enzyme treatment.

Fiber Orientation and Warpage of Film Insert Molded Parts with Glass Fiber Reinforced Substrate (유리섬유가 강화된 필름 삽입 사출품의 섬유배향 및 휨)

  • Kim, Seong-Yun;Kim, Hyung-Min;Lee, Doo-Jin;Youn, Jae-Ryoun;Lee, Sung-Hee
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.117-125
    • /
    • 2012
  • Warpage of the film insert molded (FIM) part is caused by an asymmetric residual stress distribution. Asymmetric residual stress and temperature distribution is generated by the retarded heat transfer in the perpendicular direction to the attached film surface. Since warpage was not prevented by controlling injection molding conditions, glass fiber (GF) filled composites were employed as substrates for film insert molding to minimize the warpage. Distribution of short GFs was evaluated by using micro-CT equipment. Proper models for micro mechanics, anisotropic thermal expansion coefficients, and closure approximation should be selected in order to calculate fiber orientation tensor and warpage of the FIM part with the composite substrate. After six kinds of micro mechanics models, three models of the thermal expansion coefficient and five models of the closure approximation had been considered, the Mori-Tanaka model, the Rosen and Hashin model, and the third orthotropic closure approximation were selected in this study. The numerically predicted results on fiber orientation tensor and warpage were in good agreement with experimental results and effects of GF reinforcement on warpage of the FIM composite specimen were identified by the numerical results.