• Title/Summary/Keyword: 복합구배법

Search Result 14, Processing Time 0.017 seconds

Measurement of Minimum Inhibitory Concentration of Toxic Chemicals against Pseudomonas aeruginosa and Staphylococcus aureus (유해 화학물질 처리에 의한 녹농균과 포도상구균의 성장저해최소농도 측정)

  • Jiseon An;Jingyeong Kim;Jae Seong Kim;Chang-Soo Lee
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.135-144
    • /
    • 2023
  • Pseudomonas aeruginosa and Staphylococcus aureus are the two most frequently encountered pathogens responsible for chronic wound infections, often coexisting in such cases. These infections exhibit heightened virulence compared to single infections, leading to unfavorable patient outcomes. The interaction among microorganisms within polymicrobial infections has been shown to exacerbate disease progression. Polymicrobial infections, prevalent in various contexts such as the respiratory tract, wounds, and diabetic foot, typically involve diverse microorganisms, with Pseudomonas aeruginosa and Staphylococcus aureus being the most commonly identified pathogens. This study aimed to compare the growth patterns of bacteria under a concentration gradient of toxic chemicals, focusing on a Gram-negative strain of Pseudomonas aeruginosa and a Gram-positive strain of Staphylococcus aureus. The minimum inhibitory concentration (MIC), which signifies the concentration at which bacterial growth is inhibited, was determined by performing broth microdilution and assessing the bacteria's growth curves. The growth curves of both Pseudomonas aeruginosa and Staphylococcus aureus were confirmed, and the exponential growth phases were applied to calculate the doubling times of bacteria. The MIC value for each toxic chemical was determined through broth microdilution. These results allowed for the identification of disparities in growth rates between Gram-positive and Gram-negative bacteria, as well as differences in resistance to individual toxic substances. We expect that this approach has a strong potential for further development towards the innovative treatment of bacteria-associated infections.

Vegetation Classification and Ecological Characteristics of Black Locust (Robinia pseudoacacia L.) Plantations in Gyeongbuk Province, Korea (경북지방 아까시나무 조림지의 식생유형과 생태적 특성)

  • Jae-Soon Song;Hak-Yun Kim;Jun-Soo Kim;Seung-Hwan Oh;Hyun-Je Cho
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • This study was established to provide basic information necessary for ecological management to restore the naturalness of black locust (Robinia pseudoacacia L.) plantations located in the mountains of Gyeongbuk, Korea. Using vegetation data collected from 200 black locust stands, vegetation types were classified using the TWINSPAN method, the spatial arrangement status according to the environmental gradient was identified through DCA analysis, and a synoptic table of communities was prepared based on the diagnostic species determined by determining community fidelity (Φ) for each vegetation type. The vegetation types were classified into seven types, namely, Quercus mongolica-Polygonatum odoratum var. pluriflorum type, Castanea crenata-Smilax china type, Clematis apiifolia-Lonicera japonica type, Rosa multiflora-Artemisia indica type, Quercus variabilis-Lindera glauca type, Ulmus parvifolia-Celtis sinensis type, and Prunus padus-Celastrus flagellaris type. These types usually reflected differences in complex factors such as altitude, moisture regime, successional stage, and disturbance regime. The mean relative importance value of the constituent species was highest for black locust(39.7), but oaks such as Quercus variabilis, Q. serrata, Q. mongolica, Q. acutissima, and Q. aliena were also identified as important constituent species with high relative importance values, indicating their potential for successional trends. In addition, the total percent cover of constituent species by vegetation type, life form composition, species diversity index, and indicator species were compared.

Effect of Bottom Hole Pressure and Depressurization Rate on Stability and Gas Productivity of Hydrate-bearing Sediments during Gas Production by Depressurization Method (감압법을 이용한 가스 생산 시 하이드레이트 부존 퇴적층의 지반 안정성 및 가스 생산성에 대한 시추 공저압 및 감압 속도의 영향)

  • Kim, Jung-Tae;Kang, Seok-Jun;Lee, Minhyeong;Cho, Gye-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.19-30
    • /
    • 2021
  • The presence of the hydrate-bearing sediments in Ulleung Basin of South Korea has been confirmed from previous studies. Researches on gas production methods from the hydrate-bearing sediments have been conducted worldwide. As production mechanism is a complex phenomenon in which thermal, hydraulic, and mechanical phenomena occur simultaneously, it is difficult to accurately conduct the productivity and stability analysis of hydrate bearing sediments through lab-scale experiments. Thus, the importance of numerical analysis in evaluating gas productivity and stability of hydrate-bearing sediments has been emphasized. In this study, the numerical parametric analysis was conducted to investigate the effects of the bottom hole pressure and the depressurization rate on the gas productivity and stability of hydrate-bearing sediments during the depressurization method. The numerical analysis results confirmed that as the bottom hole pressure decreases, the productivity increases and the stability of sediments deteriorates. Meanwhile, it was shown that the depressurization rate did not largely affect the productivity and stability of the hydrate-bearing sediments. In addition, sensitivity analysis for gas productivity and stability of the sediments were conducted according to the depressurization rate in order to establish a production strategy that prevents sand production during gas production. As a result of the analysis, it was confirmed that controlling the depressurization rate from a low value to a high value is effective in securing the stability. Moreover, during gas production, the subsidence of sediments occurred near the production well, and ground heave occurred at the bottom of the production well due to the pressure gradient. From these results, it was concluded that both the productivity and stability analyses should be conducted in order to determine the bottom hole pressure when producing gas using the depressurization method. Additionally, the stress analysis of the production well, which is induced by the vertical displacements of sediments, should be evaluated.

The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel (경기만 염하수로에서의 잔차류 및 수송량의 대조-소조 변동과 단면 특성)

  • Lee, Dong Hwan;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.217-227
    • /
    • 2017
  • The object of this study is to estimate the net volume transport and the residual flow that changed by space and time at southern part of Yeomha channel, Gyeonggi Bay. The cross-section observation was conducted at the mid-part (Line2) and the southern end (Line1) of Yeomha channel for 13 hours during neap and spring-tides, respectively. The Lagrange flux is calculated as the sum of Eulerian flux and Stokes drift, and the residual flow is calculated by using least square method. It is necessary to unify the spatial area of the observed cross-section and average time during the tidal cycle. In order to unify the cross-sectional area containing such a large vertical tidal variation, it was necessary to convert into sigma coordinate system by horizontally and vertically for every hour. The converted sigma coordinate system is estimated to be 3~5% error when compared with the z-level coordinate system which shows that there is no problem for analyzing the data. As a result, the cross-sectional residual flow shows a southward flow pattern in both spring and neap tides at Line2, and also have characteristic of the spatial residual flow fluctuation: it northwards in the main line direction and southwards at the end of both side of the waterway. It was confirmed that the residual flow characteristics at Line2 were changed by the net pressure due to the sea level difference. The analysis of the net volume transport showed that it tends to southwards at $576m^3s^{-1}$, $67m^3s^{-1}$ in each spring tide and neap tide at Line2. On the other hand, in the control Line1, it has tendency to northwards at $359m^3s^{-1}$ and $248m^3s^{-1}$. Based on the difference between the two observation lines, it is estimated that net volume transport will be out flow about $935m^3s^{-1}$ at spring tide stage and about $315m^3s^{-1}$ at neap tide stage as the intertidal zone between Yeongjong Island and Ganghwa Island. In other words, the difference of pressure gradient and Stokes drift during spring and neap tide is main causes of variation for residual current and net volume transport.