• Title/Summary/Keyword: 복사 열전달

Search Result 193, Processing Time 0.023 seconds

Combined Radiation-Natural Convection Heat Transfer in a Rectangular Enclosure (직사각형 밀폐공간내에서의 복사 및 자연대류 열전달)

  • 김기훈;이택식;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.331-344
    • /
    • 1987
  • A numerical analysis has been conducted on the interaction of the thermal radiation and natural convection in a rectangular enclosure filled with a gray fluid. P-1 approximation is adopted for the radiative transfer and its application limit is examined. Considered are the Stark number effect, the optical thickness effect and the wall emissivity effect on the flow and heat transfer characteristics. As the Stark number increase or the optical thickness decreases, the boundary layer thickness and the flow velocity increase. Transition to turbulence is retarded with the increase of the radiation effect. When the optical thickness is one, the radiation effect is negligible for the Stark numbers larger than 10.

Thermal Analysis of a Radial Heat Sink with Radiation and Natural Convection (복사 열전달을 고려한 자연대류 원형 히트싱크 열전달 해석)

  • Yu, Seung-Hwan;Jang, Dae-Seok;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.385-390
    • /
    • 2012
  • A radial heat sink, adopted to LED(light emitting diode) downlight, was optimized. Discrete transfer radiation model (DTRM) was used to calculate radiation heat transfer, and numerical model was verified with experimental results. The effects of number of fin, long fin length and middle fin length on overall thermal resistance and radiation heat transfer were analyzed. As the emissivity increased, thermal resistance decreased due to the increment of radiation heat transfer. The radial heat sink was optimized and optimum number of long fins is 19~28, optimum length of long fin is about half of radius of heat fink and optimum fin ratio is 0.4~0.7.

Analysis of Natural Convection and Radiation Heat Transfer in a Square Enclosure by Spherical Harmonics Approximation (구 조화 근사법에 의한 정사각형 밀폐공간내의 자연대류-복사열전달 해석)

  • 차상명;김창기;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.1021-1029
    • /
    • 1991
  • 본 연구에서는 2차원 정사각형 밀폐공간내에서 흡수 및 방사하는 회기체에 대 한 자연대류-복사 열전달을 P-1 및 P-3 근사법을 이용하고 수치해석을 통하여 유동 및 열전달 특성을 연구하였고 Plank 수, 광학두께 및 벽방사율의 영향을 조사하였다. 또한 P-3 근사해와 비교함으로써 P-1 근사해의 적용범위를 고찰하였다.

Prediction of Temperature Distribution for Heat Treatment of 2.5% C-15% Cr Sleeve Casting Roll for Coke Biquette (2.5% C-15% Cr 성형탄 슬리이브 캐스팅로울의 열처리에 대한 온도 분포예측)

  • 하만영;윤영환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.408-418
    • /
    • 1986
  • 본 연구에서는 표면은 단단하고 내면은 강인한 조직을 얻기위하여 대형 성형 탄 로울에 대하여 노에서의 급속가열 및 대기 상태에서의 자연냉각의 열처리가 수행 되어진다. 급속가열 및 냉각시 성형탄 로울 내부의 온도 분포 예측을 위하여 대류 및 복사 열전달 경계조건을 가지는 1차원 비정상 열전도 방정식이 유한 차분법을 사 용하여 해석되어졌다. 여기서 급속가열시 연소가스로 부터 기체복사에 의하여 성 형탄 로울의 바깥표면을 통하여 흡수되는 열량은

열진공 챔버 내의 불균일한 열환경이 시편에 미치는 영향에 관한 수치적 연구

  • Go, Tae-Sik;Seo, Hui-Jun;Jo, Hyeok-Jin;Park, Seong-Uk;Im, Seong-Jin;Mun, Gwi-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.103.2-103.2
    • /
    • 2013
  • 위성체는 우주공간의 고진공 상태와 태양 복사열에 의한 고온 및 극저온이 반복되는 가혹한 환경으로 인해 주요 부품의 기능장애가 초래되므로 발사전 지상에서 열진공 시험장비를 이용한 열진공시험을 수행한다. 우수한 성능의 위성체 부품의 검증을 위해서 열환경 시험 요구에 따라 균일한 복사열이 매우 중요하나, 시험 조건을 비롯하여 여러 원인으로 인하여 열전달의 불균일성이 발생하게 된다. 이로 인해 시스템에 큰 영향을 미칠 수 있으므로, 시험 조건에 의한 열전달량을 고려하여 적절한 히터파워를 선정하고 챔버 내에 적절한 방열판과 챔버 슈라우드의 열교환이 간섭이 없도록 장비를 운용해야 한다. 본 연구에서는 상용프로그램인 FLUENT를 이용하여 열진공 챔버 내부 벽면의 불균일한 복사열에 따른 비정상 열전달 특성에 대하여 수치해석을 수행한 뒤 시편의 온도 분포 및 열전달 특성에 대해 비교분석하였다.

  • PDF

Heat transfer on annular fins with one-dimensional radiative and convective heat exchange (원형휜에서 열전달 특성분석)

  • 이금배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1621-1628
    • /
    • 1990
  • Numerical solutions are presented for the heat transfer from radiating and convecting fins. Consideration is given to thin, annular fins attached to a tube surface for which the temperature is constant. Fin to fin, fin to base, and fin to environment radiative interactions are considered. It is assumed that the radiating surface is diffuse-gray, the environment is black, and the surrounding fluid is transparent. The radiation terms are formulated by using Poljak's net-radiation methoad. The mathematical description of the simultaneously heat transport by conduction, convection, and radiation leads to a nonlinear integro-differential equation. This has been solved for a wide range of the pertinent physical parameters by using finite difference method and iteration method based on the Newton-Raphson technique. The temperature distributions, heat transfer rates, fin efficiencies, and fin effectivenesses are presented in dimensionless form. The results definitely indicate that the use of fins leads to a significant increase in heat transfer compared with the unfinned tube.

A Numerical Study On Thermal Characteristics of HALE UAV Solar Arrays (HALE 무인기의 태양전지 열특성에 관한 해석적 연구)

  • Song, Ji-Han;Nam, Yoonkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, a numerical analysis is made of the fluid flow and heat transfer characteristics in the solar arrays of HALE (High Altitude Lond Endurance) UAV. In the stratosphere where UAV operates, high level solar radiation is induced, heat transfer decreases due to natural convection and forced convection is dominated by ambient flow. In order to predict the solar array temperature range in this environment condition, the conjugate heat transfer analysis was carried out for the solar arrays on the main wing. The investigation focused on the temperature distribution of solar array and heat transfer characteristics according to influence of solar energy, flight condition as vehicle speed, air density, temperature.

Analysis of Conjugated Heat Transfer for the Diffuser Exposed to Hot Combustion Gas (고온 연소가스에 노출되는 디퓨저의 복합 열전달량 계산)

  • Jin, Sang-Wook;Na, Jae-Jung;Rhe, Sang-Ho;Lee, Kyu-Jun;Lim, Jin-Shik;Kim, Sung-Don
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.231-234
    • /
    • 2010
  • Analysis of conjugated heat transfer has been conducted for the diffuser exposed to hot combustion gas to design the mechanical durability in high temperature. All the heat transfer means, conduction, convection and radiation have been considered to calculate the total heat flux from hot gas to diffuser surface. The calculation has been implemented by two kinds of methods. One thing is one dimensional method based on empirical equations. The other is CFD(Computational Fluid Dynamics) axisymmetric calculation containing ${\kappa}-{\omega}$ SST(Shear Stress Transport) turbulent model and DO(Discrete Ordinate) radiation model. The derived results of two methods have compared and showed similar values. From this result, the amount of cooling water and the dimension of water cooling channel were decided.

  • PDF

A Development of Thermal Radiation Plume Modelling for Heat Transfer to KSLV-II Engine Base (한국형 발사체 기저부 열전달 해석을 위한 플룸 복사 모델링 개념 개발)

  • Kim, Seong-Lyong;Ko, Ju-Yong;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.507-514
    • /
    • 2012
  • In the present research, NASA LRB plume radiation models are reconstructed with Thermal Desktop software, where the radiation to vehicle base environment can be calculated. The calculation shows the similar radiation heat compared to NASA prediction. Based on LRB plume radiation model, a KSLV-II thermal radiation model is proposed.

  • PDF

A Study on Thermal Characteristics of Stratospheric Airship Considering Radiation Heat Transfer (복사 열전달에 의한 성층권 무인 비행선의 열 특성 연구)

  • Kim Seung-Min;Lee Sang-Myeong;Roh Tae-Seong;Choi Dong-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.285-288
    • /
    • 2005
  • A Stratospheric airship should stay long to achieve its original mission. Meanwhile, to obtain what the solar radiation and heat transfer have an effect on Stratospheric condition, heat analysis has been done. For this work, Stratospheric heat condition's been examined and for the numerical analysis, by using Gridgen, grids of airship have been generated. And by using STAR-CD, the study about heat characteristic of airship model was carried out. Especially, with changing the position of the Sun, the temperature change of the airship body was focused on. With this background, the possibility of realizing the simulation of the effects solar radiation have on the Stratospheric airship.

  • PDF