• Title/Summary/Keyword: 복사열

Search Result 727, Processing Time 0.022 seconds

A Combustion Characteristic Analysis of PMMA by Cone Heater of the flexible Heat Flux (콘 히터의 유동적인 열선속을 적용한 PMMA의 연소 특성 분석)

  • Moon, Sung-Woong;Ryu, Sang-Hoon;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.39-44
    • /
    • 2010
  • The cone calorimeter method which is currently used to measure the heat release rate has a fixed rate of radiation. However, in the real fire, when flame combustible material burns, it releases the identical heat flux. We measured the changes of temperature of a fire using FDS in order to analyze flexible heat flux of combustion characteristics. In this study, the rate of radiation of cone calorimeter was adopted by using FDS. Follow those results, it produce between the rate of radiation in the growth period and decline period have a significant impact on heat release rate of PMMA.

A Numerical Study on Effect of Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames at High Pressure (고압하에서 수소 확산화염의 소염에 미치는 복사 열손실 효과에 관한 수치적 연구)

  • Oh, Tae-Kyun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Extinction characteristics of hydrogen-air diffusion flames at various pressures are investigated numerically by adopting counterflow flame configuration as a model flamelet. Especially, effect of radiative heat loss on flame extinction is emphasized. Only gas-phase radiation is considered here and it is assumed that $H_2O$ is the only radiating species. Radiation term depends on flame thickness, temperature, $H_2O$ concentration, and pressure. From the calculated flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of $H_2O$ increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region, where flame is sustained, shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate. The present numerical results show that radiative heat loss can reduce the operating range of a combustor significantly.

An Investigation of Radiation Heat Transfer on The Horizontal Fin of An External Fuel Tank by Flame of a Flying Flare (날아가는 섬광탄이 연료탱크 수평핀에 미치는 복사열전달 연구)

  • Jung, Daehan;Kang, Chihang;Kim, Sitae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.197-203
    • /
    • 2014
  • In this paper, the effect of unsteady radiation on the horizontal fin of an external fuel tank by flame of a flying flare was analysed to see the temperature increase of the fin and the thermal impact on the fin. Radiation between two surfaces was calculated using the concept of radiation resistance of surface and space including radiation, irradiation and shape factor for two flying trajectories of a flare, maximum temperature of 2200 K, emissivity of 0.95, flying velocity of 30 m/s, and thermal surface area of $0.01m^2$. The result shows that the temperature increase of the fin is 0.236 K, and the thermal effect on the fin is ignorable. And it was found that temperature is increased a little because small amount of heat energy can be radiated due to the short exposure time to the heat source.

Radiation Effects on the Ignition and Flame Extinction of High-temperature Fuel (고온연료의 점화 및 화염 소화특성에 미치는 복사효과)

  • Kim, Yu Jeong;Oh, Chang Bo;Choi, Byung Il;Han, Yong Shik
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.50-56
    • /
    • 2013
  • The radiation effects on the auto-ignition and extinction characteristics of a non-premixed fuel-air counterflow field were numerically investigated. A detailed reaction mechanism of GRI-v3.0 was used for the calculation of chemical reactions and the optically-thin radiation model was adopted in the simulations. The flame-controlling continuation method was also used in the simulation to predict the auto-ignition point and extinction limits precisely. As a result, it was found that the maximum H radical concentration, $(Y_H)_{max}$, rather than the maximum temperature was suitable to understand the ignition and extinction behaviors. S-, C- and O-curves, which were well known from the previous theory, were identified by investigating the $(Y_H)_{max}$. The radiative heat loss fraction ($f_r$) and spatially-integrated heat release rate (IHRR) were introduced to grasp each extinction mechanism. It was also found that the $f_r$ was the highest at the radiative extinction limit. At the flame stretch extinction limit, the flame was extinguished due to the conductive heat loss which attributed to the high strain rate although the heat release rate was the highest. The radiation affected on the radiative extinction limit and auto-ignition point considerably, however the effect on the flame stretch extinction limit was negligible. A stable flame regime defined by the region between each extinction limit became wide with increasing the fuel temperature.

An Experimental Study on the Heat Transfer Characteristics for a Flat Plate Solar Collector with a Heat Pipe (열파이프가 부착된 평판형 태양열 집열기의 열전달 특성에 대한 실험적 고찰)

  • 김철주;임광빈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1237-1245
    • /
    • 1993
  • In this study, a model of a flat plate solar collector using a heat pipe was manufactured and tested to investigate such operational characteristics of the present system of solar collector as start-up process, temperature distribution on the absorber plate and operation of the heat pipe. Moreover, collector efficiency was measured for 20-30 minutes of operation at various conditions of weather and the result was compared with that tested by Hill et. a. for a flat plate solar collector using direct circulation of coolant. Some results obtained in this study could be summarized as follows. (1) The required time for the initial start-up process was about 5-6 minutes, but the heat pipe began to operate as soon as the absorber plate was exposed to solar radiation. (2) On the absorber plate, the temperature distributions in axial direction maintained nearly constant, while temperature distributions in transversal direction showed smooth decrease with $3-5^{\cird}C$ along with solar radiation. (3) Thermal inertia of the collector system had a favorable effect to damp the turbulent variation of solar radiation. (4) The collector efficiency of the present system showed nearly the same tendency but a decrease of about 10% compared with that using direct circulation of coolant.

A Study on Heat-transfer Characteristics the Shelter by Solar-heat Radiant (쉘터의 태양열 복사에 의한 열전달 특성에 관한 연구)

  • Shim, Dong-Hyouk;Noh, Kyung-Ho;Park, Jin-Yong;Lim, Young-Taek
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.25-33
    • /
    • 2018
  • When developing military equipment, it should be designed considering the temperature condition so that the operator can operate in a stable environment. The shelter for storing various military equipments is operated in various environments. The storage temperature and operating requirements of the test equipment and repair accessories shall be $-32^{\circ}C$ to $50^{\circ}C$ and the inside of the shelter shall be designed to meet the storage temperature and operating requirements. In this study, thermal analysis of a 2.5 ton military shelter operating under high temperature and solar heat conditions is performed considering MIL-STD-810G. The thermal analysis was applied by using the concept of heat resistance and heat circuit, and the solar thermal test was performed on the actually manufactured military shelter in order to verify the analysis results.

Numerical Study of Thermo-hydraulic Boundary Condition for Surface Energy Balance (지표면 열평형의 열-수리적 경계조건에 대한 수치해석)

  • Shin, Hosung;Jeoung, Jae-Hyeung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.25-31
    • /
    • 2021
  • Boundary conditions for thermal-hydraulic problems of soils play an essential role in the numerical accuracy. This study presents a boundary condition considering the thermo-hydraulic interaction between the ground and the atmosphere. Ground surface energy balance consists of solar radiation, ground radiation, wind convection, latent heat from water evaporation, and heat conduction to the ground. Equations for each heat flux are presented, and numerical analyses are performed in conjunction with the FEM program for the thermal-hydraulic phenomenon of unsaturated soils. Numerical results using the weather data at the Ulsan Meteorological Observatory are similar to the measured surface temperature. Latent heat caused by water evaporation during the daytime lowers the surface temperature of the bare soil, and a thermal equilibrium is reached at nighttime when the effect of the ground condition is significantly reduced. The temperature change of the surface ground is diminished at the deeper ground due to its thermal diffusion. Numerical analysis where the surface ground temperature is the primary concern requires considering the thermo-hydraulic interaction between the ground and the atmosphere.

월간닭고기

  • 한국계육협회
    • Monthly Korean Chicken
    • /
    • v.4 no.1 s.31
    • /
    • pp.2-8
    • /
    • 1998
  • 브로일러 생계 생산비 Kg당 1천4백70원 추정 - 중국산 닭고기수입 전면 금지 조치 - 일본, 양계산물 가공소비 증가 - 농림부, 축산정책자금 상환 연장키로 - 동유럽, 양계산업 회복 움직임 - 중국, 평균 관세율 $17{\%}$로 인하 - 생산증가 계속되는 미국 브로일러 산업 - 프랑스 - 생산 증가 불구 세계시장 점유율 감소 - 아시아권의 금융위기로 세계 곡물가 하락세 - 금년도 곡물수급 전망 불투명 - 복사열 육추기가 육추에는 적합 - 절식중 살모넬라의 피해 증가 주의 - 98년 제1차 생산책임자 회의 개최 - 통합경영분과위원회 회의 개최 - 육계계열사 생산비 상승과 닭소비 부진으로 이중고

  • PDF

대형 통신위성의 우주환경 지상검증을 위한 제어시스템 설계

  • 서희준;조혁진;이상훈;문귀원;최석원
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.76-76
    • /
    • 2004
  • 점차 정밀화 및 대형화되고 있는 통신위성의 운영 우주환경은 고진공 환경이며 태양 복사열에 의한 고온 환경 및 극저온이 반복되는 가혹한 환경으로 특징지어진다. 위성체는 지상에서 발사되어 우주궤도에 진입한 순간부터는 계속해서 우주환경에 노출되며 이러한 가혹한 우주환경에 의해서 위성체의 주요부품에 기능장애가 초래되기도 하고 이는 결국 임무의 실패로 이어지도 한다. 위와 같은 이유들로 인하여 위성체는 지상에서 우주환경 시험을 거쳐 기능 및 작동상태를 점검해야 하며, 이를 위해서는 우주환경을 모사 할 수 있는 우주환경 모사장비가 필요하다. (중략)

  • PDF