• Title/Summary/Keyword: 복사냉방

Search Result 37, Processing Time 0.02 seconds

Development of Energy Efficient Smart Module with Variable Direction of Heat Flow, Heat Capacity and Surface Absorptivity (Thermo-Diode식 태양열 이용 모듈(Smart Module)개발)

  • Lee, K.J.;Chun, W.G.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.119-128
    • /
    • 1998
  • This study has been carried out to develop a thermo-diode system capable of adjusting heat flow direction, solar absorptivity and thermal capacity. What we call "Smart Module" here has emerged from a series of repeated processes involving design, construction and test. In all, it is found that liquid thermo-diode systems are viable in harnessing the sun's energy. The module can be applied for space heating in winter and reduce the cooling load of buildings in summer.

  • PDF

Evaluation of Thermal Comfort in Ceiling Cooling System (천장복사냉방의 온열쾌적성 평가에 관한 연구)

  • Lee, Ju-Youn
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.287-293
    • /
    • 2008
  • The purpose of this study was to clarify the effects of air and ceiling temperatures on a type of ceiling cooling system that involves cool water circulation. The experiment is conducted in summer. The subjects (11 young females) are exposed to the following conditions: combinations of air temperatures $(27^{\circ}C,\;29^{\circ}C,\;31^{\circ}C)$ and ceiling temperature of $(22.7^{\circ}C,\;23.7^{\circ}C,\;24.7^{\circ}C)$ in still air and RH 50%. The following results were obtained; the thermal sensation vote is neutral at a mean skin temperature of $34.5^{\circ}C$. The ceiling temperature affected different parts of the body. For example, the forehead, scapula and abdomen produced different skin temperatures. Thermal comfort vote was rated as comfortable at high temperature environment. The satisfaction from the ceiling temperature was valued comfortable zone in this experiment. Mean skin temperature showing higher thermal neutrality temperature than existing studies for floor and wall radiation cooling results.

A Procedure for Computing Conduction Time Series Factors by Numerical Method (전도 시계열 계수를 수치해석으로 구하는 방법)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.77-84
    • /
    • 2017
  • The purpose of this paper is to propose the way of computing conduction time series factors (CTSF) using numerical method. After the accuracy of the numerical solution procedure being verified, the method is applied to the wall type 24 and roof type 14 of ASHARE to find the conduction time series coefficients, so called conduction time series factors. The results agree well with the values presented in the ASHRAE handbook. The method proposed can be easily applied to find unknown CTSF for more complex structures. It provides information about the temperature changes at a given location and time, thus validity of generated CTSF can be checked easily.

Evaluation of Heating and Cooling Thermal Output Characteristics of Prefabricated Steel Wall Panel System for Radiant Heating and Cooling (강판 마감형 조립식 벽패널 복사냉난방시스템의 냉난방 방열 특성 평가)

  • Lim, Jae-Han;Koo, Bo-Kyoung;Kim, Sung-Im;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.70-77
    • /
    • 2013
  • Recently the radiant panel heating and cooling system has been regarded as an alternative of low temperature heating and high temperature cooling by applying the renewable energy sources to the heating and cooling of buildings. Especially this system can be used as HVAC system alternatives in super high-rise buildings for energy saving and thermal comfort. Also it can be possible to reduce the plenum space because the minimum ventilation air will be supplied into the space. This study focused on the evaluation the basic characteristics of thermal output in prefabricated steel wall panel system for radiant heating and cooling. In order to evaluate the thermal output according to both various supply water temperatures and supply water flow rates, three-dimensional dynamic heat transfer analysis was performed. As results, for the heating mode, thermal output increased by 26% with the supply temperature increasing by $5^{\circ}C$. The surface temperature of panels range within $1{\sim}3^{\circ}C$. For the cooling mode, thermal output decreased by 18.2% with the supply temperature increasing by $2^{\circ}C$. The surface temperature of panels range within $0.5{\sim}1^{\circ}C$ and it was shown the even temperature distribution.

Night Purge Evaluation Using the RTS-SAREK in Office Buildings (RTS-SAREK을 이용한 사무용 건물의 나이트 퍼지 성능 평가)

  • Shin, Dongshin;Park, Sungkeun;Park, Youngsoo;Park, Jisu;Lee, Jinyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.633-638
    • /
    • 2015
  • This study evaluates the capacity of night purging in office buildings to reduce the cooling load. RTS-SAREK is used to estimate the performance of night purging on the steady state. To overcome steady state RTS program limitations, we added unsteady heat transfer equations. When the ACH (Air Change per Hour) increases, the wall temperature decreases in both the steady and unsteady states. The unsteady heat transfer rate is different from the steady transfer rate, which validates the unsteady calculation. When ACH is low, the heat transfer rate increases continuously with time. When ACH becomes higher, the heat transfer rate increases and decreases with time. When ACH is quite high, there exists a large difference in the heat transfer rate between the steady and unsteady calculations, which emphasizes the importance of the unsteady calculation.

A Procedure for Computing Conduction Time Series Factors for Walls and Roofs with Large Thermal Capacity by Finite Difference Method (열용량이 큰 벽체나 지붕재의 전도시계열 계수를 유한차분법으로 구하는 과정)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.27-36
    • /
    • 2018
  • The purpose of this paper is to apply the numerical solution procedure to compute conduction time series factors (CTSF) for construction materials with large thermal capacities. After modifying the procedure in Ref. [9], it is applied to find the CTSF for the wall type 19 and the roof type 18 of ASHRAE. The response periods for one hr pulse load are longer than 24hrs for these wall and roof. The CTSF generated using modified procedure agree well with the values presented in the ASHRAE handbook. The modified procedure is a general procedure that can be applied to find CTSF for materials with complex structures. For the large thermal capacity materials, it should be checked whether thermal response period of the material is over 24hr or not. With suggested solution procedure, it is easy to check the validity of the CTSF based on 24hr period.

Analysis of the Top Loss Coefficient for Flat Plate Collector in a Solar Air-Conditioning System during Winter (태양열 이용 냉난방 공조시스템중 평판형 집열기의 동계 상부 열손실 해석)

  • Kim, B.C.;Choi, K.H.;Kum, J.S.;Kim, J.R.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.15-24
    • /
    • 1998
  • There are mainly 3 heat losses from solar collector; top, bottom, and edge heat loss. Usually edge heat loss is small so that could be neglected. Of the total thermal losses occurring in a flat plate solar collector, top loss heat losses are dominant. Therefore it is necessary to calculate the top loss coefficient accurately in order to find out performance of solar collector. The flat plate solar collector(regenerator in summer) used in this study was made for year-round all conditioning. In order to find out collector efficiency for heating in winter without a system change, outdoor experiment was done. The top loss coefficient of this collector was about 3 to $4.5W/m^2^{\circ}C$. Futhermore use of selective coating in trickling surface can improve a performance of flat plate solar collector.

  • PDF