• Title/Summary/Keyword: 보행 동작 분석

Search Result 108, Processing Time 0.023 seconds

Dynamic Bayesian Network-Based Gait Analysis (동적 베이스망 기반의 걸음걸이 분석)

  • Kim, Chan-Young;Sin, Bong-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.5
    • /
    • pp.354-362
    • /
    • 2010
  • This paper proposes a new method for a hierarchical analysis of human gait by dividing the motion into gait direction and gait posture using the tool of dynamic Bayesian network. Based on Factorial HMM (FHMM), which is a type of DBN, we design the Gait Motion Decoder (GMD) in a circular architecture of state space, which fits nicely to human walking behavior. Most previous studies focused on human identification and were limited in certain viewing angles and forwent modeling of the walking action. But this work makes an explicit and separate modeling of pedestrian pose and posture to recognize gait direction and detect orientation change. Experimental results showed 96.5% in pose identification. The work is among the first efforts to analyze gait motions into gait pose and gait posture, and it could be applied to a broad class of human activities in a number of situations.

Statistical Modeling Methods for Analyzing Human Gait Structure (휴먼 보행 동작 구조 분석을 위한 통계적 모델링 방법)

  • Sin, Bong Kee
    • Smart Media Journal
    • /
    • v.1 no.2
    • /
    • pp.12-22
    • /
    • 2012
  • Today we are witnessing an increasingly widespread use of cameras in our lives for video surveillance, robot vision, and mobile phones. This has led to a renewed interest in computer vision in general and an on-going boom in human activity recognition in particular. Although not particularly fancy per se, human gait is inarguably the most common and frequent action. Early on this decade there has been a passing interest in human gait recognition, but it soon declined before we came up with a systematic analysis and understanding of walking motion. This paper presents a set of DBN-based models for the analysis of human gait in sequence of increasing complexity and modeling power. The discussion centers around HMM-based statistical methods capable of modeling the variability and incompleteness of input video signals. Finally a novel idea of extending the discrete state Markov chain with a continuous density function is proposed in order to better characterize the gait direction. The proposed modeling framework allows us to recognize pedestrian up to 91.67% and to elegantly decode out two independent gait components of direction and posture through a sequence of experiments.

  • PDF

The Comparative Analysis of EMG Activities on the Lower Limb Muscles during Power Walking and Normal Walking (파워보행과 일반보행 시 하지근의 근전도 비교 분석)

  • Gi, Se-Joon;Chae, Woen-Sik;Kang, Nyeon-Ju;Jang, Jae-Ik;Yoon, Chang-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.125-133
    • /
    • 2008
  • The purpose of this study was to compare EMG activities on the lower limb muscles during power walking and mormal walking. Seventeen subjects who have no known musculoskeletal disorders performed walking exercise at a cadence of 140 beats/min. After surface electrodes were attached to rectus femoris, vastus medialis, vastus lateralis, biceps femoris, tibialis anterior, medial gastrocnemius, averageed IEMG and peak IEMG, were measured. The result showed that the power walking did influence the averaged IEMG and peak IEMG. The EMG activity of the quadriceps during power walking was significantly higher than the corresponding values in normal walking during most phases. The averaged IEMG and peak IEMG of gastrocnemius muscles at the end of the double limb stance increased significantly when going from normal walking to power walking. The results indicate that power walking had greater effect on EMG activities on the lower limb muscles and demonstrate that the wide range of benefits can be obtained from power walking in respect to health and fitness. This study suggests that power walking has the potential to improve aerobic fitness and assist in weight management.

A Study on Walking Movements for Skirt Patterns with 3D Motion Analysis System (3차원 동작분석장치를 이름한 하지동작 연구)

  • Kim, Jung-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.9
    • /
    • pp.1603-1613
    • /
    • 2001
  • 본 연구는 동작분석장치를 이용하여 하지동작분석을 시도함으로서 실제 동작 시 적응 할 수 있는 의복설계를 위한 기초 자료로서 하지부 실루엣 변화의 특성을 밝히고자 하였다. 대퇴돌기점을 기준으로 본 하지동작의 진행방향 이동과 상향 방향이동을 살펴보았는데 보행유형에 따라 여유량이 특히 요구되는 부위가 각기 다르며, 부위별 필요 여유 량도 각기 다르다는 것을 알 수 있었으며 , 이러한 보행유형 별 스커트 실루엣의 특징은 기능복 설계 시 고려되어야 하겠다. 평지보행 시는 발목부위가 전면방향보다 후면방향으로 이동의 범위가 크므로 트임이나 주름이 뒷면에 있는 것이 적합하고, 계단승강이나 버스승강의 경우 무릎전면에 여유량이 필요하므로 주름이나 트임을 앞쪽에 주는 것이 바람직하며 그 길이는 대퇴돌기점 높이정도에서 시작하여야 하고 무릎아래에 있는 앞트임은 하지동작에 도움이 되지 않음을 알 수 있었다.

  • PDF

Effects of 12-Week Complex Training Program on Foot-Pressure Patterns of the Elderly Women (12주간 복합운동이 여성 노인의 족저압력에 미치는 영향)

  • Lee, Joong-Sook;Yang, Jeong-Ok;Lee, Bom-Jin;Park, Sang-Mook
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.117-126
    • /
    • 2009
  • The purpose of this study was to investigate the effects of 12-week complex training program on foot pressure patterns of the elderly women. The training program consisted of aerobic exercise and muscular training for 12 weeks. Two stages of walking were given to the participants before and after treatment: (a) straight walking; and (b) turn at $45^{\circ}$ while walking. Data related to foot-pressure distribution(FPD) while walking were collected from each stage and analyzed. Results indicated that in both stage of walking, the mean of the foot pressure(FP) was significantly reduced after the participation in the program. Results also revealed that in all stages, the patterns of the FPD and the center of pressure(COP) were widely lower and more stable. Based on the results of this study, it was concluded that participating in a 12-week complex program bas impact on the gait patterns of the elderly women, reducing the foot pressure on their shoes.

Ground Reaction Force Characteristics During Forward and Backward Walking Over 20 Degree Ramp (20° 경사로 앞.뒤 보행 동작 시 지면반력의 형태 비교 분석)

  • Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.3
    • /
    • pp.71-82
    • /
    • 2008
  • W. S. CHAE, Ground Reaction Force Charateristics During Forward and Backward Walking Over 20 Degree Ramp. Korean Journal of Sport Biomechanics, Vol. 18, No. 3, pp. 71-82, 2008. The purpose of this study was to compare GRF characteristics during forward and backward walking over 20 degree ramp. Temporal parameters, GRFs, displacement of center of pressure (DCP), and loading and decay rates were determined for each trial. The results showed that the vertical GRF in BD during RTO was significantly greater than those found in FU. This reults indicated that GRF patterns may be changed by different walking conditions and altering position of ankle, knee, and center of mass throughout the walking cycle. The DCP during $RHC_2$-LHC in antero-posterior direction for downward was smaller than the corresponding value for upward condition. It' seems that the ankle and knee joints are locked in an awkward fashion at the toe contact to compensate for imbalance. Reducing the magnitude of loading rate can be achieved by walking in the backward direction. Accordingly, the results can be a benefit if one is suffering from an impact-type injury.

Effect of a Elderly Walker on Joint Kinematics and Muscle Activities of Lower Extremities Using a Human Model (인체 모델을 이용한 노인 보행기의 하지관절 기구학과 근활성에 미치는 영향)

  • Shin, Jun-Ho;Kim, Yoon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1243-1248
    • /
    • 2011
  • The purposes of this study were to develop a dynamic model of a human and to investigate the effect of a walker on an elderly subject's motions, such as sit-to-stand (STS) motion and normal gait, by using this model. A human model consisting of 15 segments and 14 joints was developed, embedded in $RecurDyn^{TM}$, and connected through a Simulink$^{(R)}$ interface with collected motion data. The model was validated by comparisons between joint kinematic results from inverse dynamics (Matlab$^{(R)}$-based in-house program) and from $RecurDyn^{TM}$ simulation during walking. The results indicate that the elderly walker induced a longer movement time in walking, such that the speed of joint flexion/extension was slower than that during a normal gait. The results showed that the muscle activities of parts of the ankle and hamstring were altered by use of the elderly walker. The technique used in this study could be very helpful in applications to biomechanical fields.

Analysis of stair walking characteristics for the development of exoskeletal walking assist robot (외골격 보행보조로봇 개발을 위한 정상인의 계단보행특성 분석)

  • Cho, H.S.;Chang, Y.H.;Ryu, J.C.;Mun, M.S.;Kim, C.B.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The mechanical system of wearable walking assist robot needs to be optimized for adapting with human body structure and the planned control algorithm should have a secure procedure when a incongruity situation which can cause musculoskeletal injury occurs because a wearable robot is attached to a body. The understanding of walking or musculoskeletal motions characteristics must be preceeded and analyzed for developing novel wearable walking assist robot. In this study we tried to find out the capacities of powers and torques of joint actuators to design optimized performances of system and to obtain the analysis data to figure out the characteristics of joint movements during some types of walk. The major types of walk and motion are stair climbing and descending, sit-to-stand motion, and slope walking. In this study all these motions were analyzed experimentally except slope walking.

  • PDF

Effect of Walking Speed on Lower Extremity Internal and External Rotation While Turning 90 Degrees (90도 회전 시 보행속도가 하지의 내외 회전에 미치는 효과)

  • Yoon, Jang-Whon
    • Physical Therapy Korea
    • /
    • v.8 no.4
    • /
    • pp.1-16
    • /
    • 2001
  • 회전(turning)은 보행 중 방향을 바꾸는 운동 기술(motor skill)이고, 회전 전략(turning strategy)은 회전을 완수하는데 사용되는 일반적 행동 전형(generalized movement pattern)이다. 회전에 대한 보행속도의 영향은 분명하지 않다. 이 연구의 목적은 보행속도의 돌기 전략에 대한 영향을 분석하고 보행속도의 하지 내외 회전(internal and external rotation)에 대한 영향을 분석하는 것이다. 건강한 젊은 성인 15명이 이 연구에 자발적으로 참여하였다. 맥리플렉스 측정 장치(MacReflex measurement system)가 동작 분석(motion analysis)을 위해 사용되었다. 각각의 자원자들은 보행 중 90도 왼쪽으로 회전을 10회씩 완수하였다. 각각의 시도마다 보행속도를 다르게 하기 위해서 세 가지의 다른 요구들(slow, regular, fast)이 임의적으로 주어졌고 각각의 실제 보행속도가 자원자의 무게중심 변화에 따라 구해졌고 요구별 평균이 구해졌다. 회전 안쪽 발의 스핀(in side foot spin)은 보행속도가 증가함에 따라 증가했지만, 회전 바깥쪽 발의 스핀(out side foot spin)은 보행속도와 상관이 없었다. 하지의 내외 회전은 보행속도와는 상관이 없었지만, 같은쪽 발의 스핀과는 역관계가 있었다. 회전은 발 스핀이 있는 돌기와 발 스핀이 없는 돌기로 구분되는 것이 합당한 듯 하다. 제한된 시간과 공간 내에서 스핀은 보행속도가 빨라질수록 몸의 전방 운동량(forward momentum)에서 몸의 전방 운동량(forward momentum)으로의 전환이 스핀이 없는 회전 시보다 효율적이다. 고관절의 내외 회전 근육들은 회전전략에 상관없이 회전되는 동안 몸의 역학(body mechanics)을 조절하는데 중요한 역할을 맡고 있는 것으로 보인다. 앞으로 회전 시 몸의 생체 역학적 그리고 신경 근육적 기전들(biomechanical and neuromuscular mechanisms)을 밝히는 연구들이 필요하다.

  • PDF

Analysis of Personal Gait Characteristics According to Legs Imbalance Gait (하지 보행 불균형 상태에 따른 개인별 보행 특성 분석)

  • Cho, Woo-Hyeong;Kim, Yeon-Wook;Kwon, Jang-Woo;Lee, Sangmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.109-119
    • /
    • 2017
  • In the present study, to determine walking imbalance using the walking analysis method, where limitations in the existing walking analysis have been minimized, we propose a new walking analysis method that adopts the following: self-developed equipment to measure the angles of left-right hip joints and knee joints; a determination system using symmetry index (SI); and dynamic time warping (DTW) similarity analysis algorithm to analyze individual walking styles. Normal and imbalanced walking tests were conducted for 12 subjects without walking disorder. From the SI calculation to determine imbalanced walking, both the normal and imbalanced walking styles can be determined using the angle measurements of the left-right hip joints and knee joints. In the analysis of the individual walking styles, the similarities at the center of the lower back, left-right thighs, and dorsum of the feet of the 12 subjects in both normal and imbalanced walking cases were compared. From the similarity analysis of the measured values during the normal and imbalanced walking tests, I determined that the walking pattern does not maintain the same stance when the body parts move during walking.