In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.
최근 모마일 폰의 발달과 스마트 폰의 보급으로 인해서 많은 콘텐츠들이 개발되어지고 있다. 특히, 모바일 휴대장치에 소형 카메라가 탑재되면서부터 카메라로부터 입력되어지는 영상 기반 콘텐츠 개발은 사람들의 흥미뿐만 아니라 활용 면에서도 중요한 부분을 차지하고 있다. 그중 문자인식 시스템은 시각 장애인 보행 보조 시스템, 로봇 자동 주행 시스템, 비디오 자동 검색 및 색인 시스템, 텍스트 자동 번역 시스템 등과 같은 활용영역에서 매우 광범위하게 쓰일 수 있다. 따라서 본 논문에서는 스마트 폰 카메라로 입력되는 자연 영상에 포함되어 있는 텍스트를 추출 및 인식하고 음성으로 출력해주는 시스템을 제안하였다. 텍스트 영역을 추출하기 위해 Adaboost 알고리즘을 이용하고 추출된 개별 텍스트 후보영역의 문자 인식에는 오류 역전파 신경망을 이용하였다.
In this study, we have developed a novel step detection algorithm for gait evaluation of patients with hemiplegia based on trunk accelerometry device. For this, we have used a bandpass filter and a least square acceleration (LSA) filter which is characterized by emphasizing the peak or valley point of the acceleration signals for each 3-axis accelerometer signals. To evaluate the algorithm, the detected steps by developed algorithm and real steps by the motion analysis system were compared. As a result, we could obtain the sensitivity of 96.44%, the specificity of 99.94% and the accuracy of 99.90% for the patients' data sets and the sensitivity of 100%, the specificity of 99.93% and the accuracy of 99.93% for the normal data sets. In conclusion, the developed algorithm is useful for the step detection for patients with hemiplegia as well as normal subjects.
최근 감시와 보안을 목적으로 활발하게 CCTV가 설치되고 있고, 지능형 감시시스템은 영상에서 객체의 검출 및 감시 등으로 광범위하게 응용되고 있다. 본 연구에서는 지능형 영상 감시 시스템에서 HOG 특징과 FCM 기반의 RBFNN 분류기를 이용한 상반신 검출 방법을 제안한다. HOG는 보행자를 검출하기 위해 기존에 제안되었던 특징으로 본 논문에서는 이를 사용해 상반신의 고유한 기울기를 학습하였다. HOG 특징은 입력 이미지의 크기에 비례하는 고차원의 특징 벡터로 기울기를 표현하기 때문에 RBFNN분류기의 입력데이터로 쓰려면 차원 축소가 필요하다. 이를 위해 PCA 알고리즘을 RBFNN 분류기 앞에 적용하여 HOG 특징의 차원을 저차원으로 축소하였다. 컴퓨터 실험에서는 미리 분류된 상반신 영상과 사람이 아닌 영상을 통해 분류기를 훈련시킨 후 테스트 영상과 동영상을 이용하여 제안된 상반신 검출 방법의 성능을 평가하였다.
본 논문에서는 안드로이드 환경에서 개인 건강로그 정보를 분석하고 개인별 맞춤형 운동정보 제공 및 보행자의 상태를 모니터링 할 수 있는 알고리즘을 제안한다. 개인 건강로그 정보 수집은 아두이노 기반의 MPU6050 센서를 이용해 사용자의 이동 raw data를 센싱하고 분석한다. 이동 정보의 구분을 위해 노이즈를 제거하고 연령별 임계값을 적용하였다. 또한 개인정보 보호를 위해 APK 파일의 디컴파일링 방지 및 암/복호화를 제공함으로 안전성을 강화하였다. 실험결과 MPU6050 센서를 손목에 부착하는 경우보다 발목에 부착한 경우가 평균 98.97% 정확하게 데이터가 측정되었고, SEED 128비트 암호화 기반의 DEX파일의 로딩시간은 평균 시간을 0.55ms로 오버헤드를 최소화하였다.
최근 아이들의 창의력 학습 및 놀이에 로봇이 활발하게 이용되고 있지만 대부분 로봇이 정형화된 형태를 가지고 있으며 프로그램의 의존도가 높아 창의력 학습 및 놀이에 어려움이 있다. 우리는 이러한 단점을 보완하기 위해 정형화 되지 않은 모듈 형태의 로봇구조를 가지고 있으면서 결합을 쉽고 안정적으로 할 수 있도록 하였고 하나의 버튼을 이용하여 사용자가 원하는 동작을 기억시키고 기억된 동작을 똑같이 재생하는 로봇을 제작 하였다. 또한 모듈 사이를 무선으로 연결하고 정보를 공유하여 다수의 모듈이 결합 되었을 경우 어느 모듈에서나 버튼을 한번 누르면 결합된 모든 모듈의 동작을 쉽게 조정할 수 있도록 하였다. 실제 동작을 검증하기 위해 두 개, 3개 및 5개의 모듈을 결합하여 자벌레 동작과 보행 로봇을 구현하여 제안된 구조와 알고리즘의 유용성을 보였다. 향 후 무선연결 방법을 보완하여 인터넷상에서 통제할 수 있는 지능화된 모듈라 로봇의 연구가 필요하다.
본 논문에서는 연속적으로 입력되는 칼라영상에서 물체의 이동에 의하여 형성된 동작영역을 확인하고, 영상의 시컨스(sequence)를 대상으로 움직이는 물체의 형태인 보행자 혹은 자동차들의 이동방향을 추적하는 시스템을 제안하였다. 카메라가 고정되어 있고 물체가 이동하는 상황에서 카메라시계에 진입하는 물체를 포착하여, 포착된 물체의 영역을 차 영상 분석을 통해 이진화하여 추출하고, 추출된 영역을 co-occurrence matrix의 RGB full 칼라의 특징 벡터를 추출하는 것을 제시하였다 추출되어지는 칼라 특징벡터를 분석하여 인접 프레임간의 이동물체 영역끼리의 대응관계를 조사함으로서, 이동물체를 추적한다. 군집화(clustering) 단계에서는 이전 단계에서 추출한 특징 벡터들 가운데 에너지, 엔트로피만을 가지고 인접 프레임간의 군집화를 조사하기 위하여 이동물체 영역들 간의 퍼지동적물체 정합 알고리즘을 적용시켰다. 인접 프레임간의 움직임 영역의 물체들에 대하여 멤버 쉽 함수를 근거로 중심 값을 계산하면, 동일 물체일 경우 중심 값 부근에서 군집이 형성되며, 이를 바탕으로 이동물체를 추출할 수 있는 방안을 제안하였다.
전기자동차는 내연기관차와 달리 엔진 소리가 거의 없고 매우 조용하여 다양한 문제를 발생시킨다. 예를 들면, 보행자들이 차가 다가오는 것을 느낄 수 없어 안전에 큰 위협이 된다. 또한 운전자는 자신의 자동차가 어느 정도 속도로 달리고 있는지 청각적으로 인식할 수 없게 된다. 이러한 문제를 해결하기 위해 전기자동차는 인위적으로 엔진소리를 만들어 재생하여야 한다. 이 논문은 기존 전기자동차의 샘플링 방식의 엔진 사운드 방식에 대해 알아보고 그 문제점을 알아본다. 향상방안으로 본 논문에서는 기존 샘플링 방식 대신 소프트웨어 신디사이저의 알고리즘을 구현하고 프로그래밍 언어를 통해 엔진 사운드를 소프트웨어적으로 구현한다. 신디사이저를 이용한 방식이 기존 샘플링 방식에 비해 우수한 성능을 가진 것으로 실험결과를 통해 입증되었다. 또한, 이러한 엔진 사운드 신디사이징을 통해 점차 보급률이 높아지고 있는 전기자동차의 안전성과 운전의 편의성, 즐거움을 줄 것으로 기대한다.
적외선 영상은 야간에 표적의 탐지가 가능하여 보완과 감시분야에 활용도가 높다. 그러나 가시광선 영상에 비하여 해상도가 낮고 잡음의 영향이 크다는 단점이 있다. 본 논문에서는 적외선 영상의 표적을 분할하는 방법을 연구한다. 표적을 포함하는 다수의 관심영역(Region of Interest)을 다단계 분할 방법을 이용하여 추출하고 관심영역을 입력영상으로 다단계 분할방법을 다시 적용하여 표적을 분할한다. 다단계 분할 방법의 각 단계는 가우시안 혼합모델의 파라미터를 초기화 하고 추정하는 k-means 클러스터링(Clustering)과 EM(Expectation-Maximization) 알고리즘과 추정된 사후확률을 이용하여 각 화소의 클러스터를 결정하는 단계로 구성된다. 본 논문에서 추출된 관심영역을 선택하고 통합하는 방법을 제안한다. 관심영역의 통합은 근접한 모든 관심영역의 윈도우를 포함하도록 이루어진다. 실험에서는 야간의 보행자로부터 획득한 적외선 영상에 제안된 방법을 적용하고 다른 분할 방법과 비교하여 제안한 방법이 우수함을 보인다.
급속히 늘어난 스마트폰의 보급은 인간의 라이프 스타일 변화에 영향을 미치고 있으며, 스마트폰 기반 위치정보는 실내외 공간에서 다양한 편의성 서비스를 제공할 수 있는 환경을 마련하고 있다. 특히, GPS 정보가 제공되고 있지 않은 지하공간의 경우에서 위치 기반 서비스가 제공된다면 정보약자와 교통약자를 위한 길 찾기와 길 안내 등 많은 편의를 제공할 수 있다. 그러나, 지하철 역사에서 길 안내 서비스 구현은 측위 정확도를 확보하는 것은 여전히 어려운 과제이다. 본 연구는 지하철 역사에서 실내 내비게이션을 위해 선행되어야 하는 모든 과정을 하나의 시스템에서 수행할 수 있도록 융합 측위 알고리즘과 함께 연속 측위에서 사용하는 새로운 보행자 걸음 인식기법을 개발하고, 평가하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.