• Title/Summary/Keyword: 보행분석 트래커

Search Result 3, Processing Time 0.022 seconds

User Experience Analysis of a Shoe-mounted Gait Analysis Tracker (신발장착형 보행분석 트래커의 사용자경험 분석)

  • Kim, Siyeon;Jung, Dahee;Lee, Joo-Young;Kwon, Jihyun;Lim, Daeyoung;Jeong, Wonyoung
    • Fashion & Textile Research Journal
    • /
    • v.23 no.3
    • /
    • pp.390-405
    • /
    • 2021
  • Gait analysis trackers have been developed to monitor daily gait patterns to improve users' running performance and reduce the risk of injuries. A variety of gait analysis trackers are available on the market(e.g., foot pods, insoles). Depending on the type of gait analysis tracker, users' discomfort or satisfaction as well as required properties may differ. Hence, the purpose of this study was to compare and analyze user experience of three different types of commercial shoe-mounted gait analysis trackers and their mobile applications in a laboratory environment using questionnaires based on actual experiences of each product. Ten males and ten females who regularly enjoy walking and running exercises participated in the experiment. After the participants set up the tracker and application themselves without support from researchers, ten to thirty minutes' exercise was permitted on each product. Following this, the participants answered questionnaires containing evaluation variables on the device and mobile application, as well as satisfaction, intention to use, recommendation, and purchase. In addition, they were asked questions about the attractive features and shortcomings of each device and application. The results showed that the PRO-SPECS® smart insole was preferred over the others for ease of use, perceived durability, psychological burden of the design, and usefulness of the information provided by the application. Along with the results of questionnaire, this study also discussed strategies and recommendations for future product design and development.

Design of Immersive Walking Interaction Using Deep Learning for Virtual Reality Experience Environment of Visually Impaired People (시각 장애인 가상현실 체험 환경을 위한 딥러닝을 활용한 몰입형 보행 상호작용 설계)

  • Oh, Jiseok;Bong, Changyun;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.11-20
    • /
    • 2019
  • In this study, a novel virtual reality (VR) experience environment is proposed for enabling walking adaptation of visually impaired people. The core of proposed VR environment is based on immersive walking interactions and deep learning based braille blocks recognition. To provide a realistic walking experience from the perspective of visually impaired people, a tracker-based walking process is designed for determining the walking state by detecting marching in place, and a controller-based VR white cane is developed that serves as the walking assistance tool for visually impaired people. Additionally, a learning model is developed for conducting comprehensive decision-making by recognizing and responding to braille blocks situated on roads that are followed during the course of directions provided by the VR white cane. Based on the same, a VR application comprising an outdoor urban environment is designed for analyzing the VR walking environment experience. An experimental survey and performance analysis were also conducted for the participants. Obtained results corroborate that the proposed VR walking environment provides a presence of high-level walking experience from the perspective of visually impaired people. Furthermore, the results verify that the proposed learning algorithm and process can recognize braille blocks situated on sidewalks and roadways with high accuracy.

Spatial Structure Analysis of View Angle Correction reflecting Characteristics of Universal Observation (보편적 주시특성을 반영한 시야각 보정 공간구조 분석)

  • Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6917-6924
    • /
    • 2015
  • The universal nature of humans is formed by the view angle and the visibility range. However, the majority of theories on spatial structure analysis based on the visual perception do neither reflect the view angle nor consider only the flat view angle. Some theories that reflect them is a theory where the part included in the view angle and the part excluded in the view angle have been separated in a dichotomous way, excluding the universal characteristics of humans. This study applied an observing probability to a 3-D visibility analysis theory by conducting a eye-tracking experiment, empirically determining the limits of the field of view, and deriving the observing probability by view angle. In addition, it attempted to identify the probability by manufacturing an application of spacial, visual perception analysis and applying the concept of multiple frustum culling. For the characteristics of observation, the data were measured and collected regarding the walking course for 3 minutes for an optional space, aimed for 33 people as subjects. Subsequently, the data were prepared by analyzing the observation fixation frequency probability.