• 제목/요약/키워드: 보정 효과

검색결과 1,282건 처리시간 0.028초

GIS-based Estimation of Climate-induced Soil Erosion in Imha Basin (기후변화에 따른 임하댐 유역의 GIS 기반 토양침식 추정)

  • Lee, Khil Ha;Lee, Geun Sang;Cho, Hong Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제28권3D호
    • /
    • pp.423-429
    • /
    • 2008
  • The object of the present study is to estimate the potential effects of climate change and land use on soil erosion in the mid-east Korea. Simulated precipitation by CCCma climate model during 2030-2050 is used to model predicted soil erosion, and results are compared to observation. Simulation results allow relative comparison of the impact of climate change on soil erosion between current and predicted future condition. Expected land use changes driven by socio-economic change and plant growth driven by the increase of temperature and are taken into accounts in a comprehensive way. Mean precipitation increases by 17.7% (24.5%) for A2 (B2) during 2030-2050 compared to the observation period (1966-1998). In general predicted soil erosion for the B2 scenario is larger than that for the A2 scenario. Predicted soil erosion increases by 48%~90% under climate change except the scenario 1 and 2. Predicted soil erosion under the influence of temperature-induced fast plant growth, higher evapotranspiration rate, and fertilization effect (scenario 5 and 6) is approximately 25% less than that in the scenario 3 and 4. On the basis of the results it is said that precipitation and the corresponding soil erosion is likely to increase in the future and care needs to be taken in the study area.

The Difference of Fitness according to Blood Pressure Level in Korean Women (한국성인 여성의 혈압수준에 따른 체력의 차이)

  • So, Wi-Young;Choi, Dai-Hyuk
    • 한국노년학
    • /
    • 제29권1호
    • /
    • pp.135-147
    • /
    • 2009
  • Recently, The number of hypertension is increasing with westernized diet and lack of exercise. Many researchers are trying to treat and prevent hypertension by exercise therapy. However, not only did most of studies analyze the effect and usefulness of exercise related to lowering hypertension, but also there is no analysis of the difference of fitness with regard to hypertension according to ages. It is assumed to be important research work to be continued to identify, from the public health's point of view, the difference of fitness with regard to hypertension according to ages can be a essential data for treating and preventing hypertension. Thus, this study is to identify the difference of fitness according to hypertension of adult female over 20s and emphasize the importance of fitness level to the hypertension. Also, this study is to devise valuable study by examining the difference of cardiovascular function. Subjects were 8889 of adult female over 20s. Subjects visited promotion of health center at Y Gu public health center and took comprehensive medical test including hypertension test in Seoul in Korea. It was divided into normal, prehypertension, stage I hypertension and stage II hypertension group by JNC7. The evaluation of cardiorespiratory function was by resting heart rate and lung capacity, the evaluation of fitness was by cardiorespiratory endurance, muscular endurance, muscular strength, power, agility, balance, and flexibility, and the difference of fitness was analyzed by ANCOVA revising independent variable of BMI, drinking, and smoking which affects hypertension. At result, there was significant difference between normal and hypertension group according to most ages in two variable of all cardiorespiratory function, seven fitness variable. Through this study, it was defined that hypertension group had lower cardiorespiratory function and fitness than normal group.

Analysis of Acoustic Psychology of City Traffic and Nature Sounds (도심 교통음과 자연의 소리에 대한 음향심리 분석)

  • Kyon, Doo-Heon;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • 제28권4호
    • /
    • pp.356-362
    • /
    • 2009
  • In modern society, most people of the world are densely populated in cities so that the traffic sound has a very significant meaning. people tend to classify traffic sound as a noise pollution while they are likely to categorize most nature sound as positive. In this paper, we applied various forms of FFT filters into white noise belonged in nature sound to find frequency characteristics of white noise which preferred by people and confirm its correlation with nature sound. In addition, we conducted an analysis through the comparison of various traffic and nature sound waveforms and spectra. As a result of analysis, the traffic sound have characteristics which sound energy had concentrated on specific frequency bandwidth and point of time compared to nature sound. And we confirmed the fact that these characteristics had negative elements to which could affect to people. Lastly, by letting the subjects listen directly to both traffic and nature sound through brainwave experiment using electrode, the study measured the energy distribution of alpha waves and beta waves. As a result of experiments, it has been noted that urban sound created a noticeably larger amount of beta waves than nature sound; on the contrary, nature sound generated positive alpha waves. These results could directly confirm the negative effects of traffic sound and the positive effects of nature sound.

Development and Assessment of LSTM Model for Correcting Underestimation of Water Temperature in Korean Marine Heatwave Prediction System (한반도 고수온 예측 시스템의 수온 과소모의 보정을 위한 LSTM 모델 구축 및 예측성 평가)

  • NA KYOUNG IM;HYUNKEUN JIN;GYUNDO PAK;YOUNG-GYU PARK;KYEONG OK KIM;YONGHAN CHOI;YOUNG HO KIM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • 제29권2호
    • /
    • pp.101-115
    • /
    • 2024
  • The ocean heatwave is emerging as a major issue due to global warming, posing a direct threat to marine ecosystems and humanity through decreased food resources and reduced carbon absorption capacity of the oceans. Consequently, the prediction of ocean heatwaves in the vicinity of the Korean Peninsula is becoming increasingly important for marine environmental monitoring and management. In this study, an LSTM model was developed to improve the underestimated prediction of ocean heatwaves caused by the coarse vertical grid system of the Korean Peninsula Ocean Prediction System. Based on the results of ocean heatwave predictions for the Korean Peninsula conducted in 2023, as well as those generated by the LSTM model, the performance of heatwave predictions in the East Sea, Yellow Sea, and South Sea areas surrounding the Korean Peninsula was evaluated. The LSTM model developed in this study significantly improved the prediction performance of sea surface temperatures during periods of temperature increase in all three regions. However, its effectiveness in improving prediction performance during periods of temperature decrease or before temperature rise initiation was limited. This demonstrates the potential of the LSTM model to address the underestimated prediction of ocean heatwaves caused by the coarse vertical grid system during periods of enhanced stratification. It is anticipated that the utility of data-driven artificial intelligence models will expand in the future to improve the prediction performance of dynamical models or even replace them.

Development of Simulation for Estimating Growth Changes of Locally Managed European Beech Forests in the Eifel Region of Germany (독일 아이펠의 지역적 관리에 따른 유럽너도밤나무 숲의 생장변화 추정을 위한 시뮬레이션 개발)

  • Jae-gyun Byun;Martina Ross-Nickoll;Richard Ottermanns
    • Journal of the Korea Society for Simulation
    • /
    • 제33권1호
    • /
    • pp.1-17
    • /
    • 2024
  • Forest management is known to beneficially influence stand structure and wood production, yet quantitative understanding as well as an illustrative depiction of the effects of different management approaches on tree growth and stand dynamics are still scarce. Long-term management of beech forests must balance public interests with ecological aspects. Efficient forest management requires the reliable prediction of tree growth change. We aimed to develop a novel hybrid simulation approach, which realistically simulates short- as well as long-term effects of different forest management regimes commonly applied, but not limited, to German low mountain ranges, including near-natural forest management based on single-tree selection harvesting. The model basically consists of three modules for (a) natural seedling regeneration, (b) mortality adjustment, and (c) tree growth simulation. In our approach, an existing validated growth model was used to calculate single year tree growth, and expanded on by including in a newly developed simulation process using calibrated modules based on practical experience in forest management and advice from the local forest. We included the following different beech forest-management scenarios that are representative for German low mountain ranges to our simulation tool: (1) plantation, (2) continuous cover forestry, and (3) reserved forest. The simulation results show a robust consistency with expert knowledge as well as a great comparability with mid-term monitoring data, indicating a strong model performance. We successfully developed a hybrid simulation that realistically reflects different management strategies and tree growth in low mountain range. This study represents a basis for a new model calibration method, which has translational potential for further studies to develop reliable tailor-made models adjusted to local situations in beech forest management.

Immersive Smart Balance Board with Multiple Feedback (다중 피드백을 지원하는 몰입형 스마트 밸런스 보드)

  • Seung-Yong Lee;Seonho Lee;Junesung Park;Min-Chul Shin;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • 제30권3호
    • /
    • pp.171-178
    • /
    • 2024
  • Exercises using a Balance Board (BB) are effective in developing balance, strengthening core muscles, and improving physical fitness and concentration. In particular, the Smart Balance Board (SBB), which integrates with various digital content, provides appropriate feedback compared to traditional balance boards, maximizing the effectiveness of the exercise. However, most systems only offer visual and auditory feedback, failing to evaluate the impact on user engagement, interest, and the accuracy of exercise postures. This study proposes an Immersive Smart Balance Board (I-SBB) that utilizes multiple sensors to enable training with various feedback mechanisms and precise postures. The proposed system, based on Arduino, consists of a gyro sensor for measuring the board's posture, a communication module for wired/wireless communication, an infrared sensor to guide the user's foot placement, and a vibration motor for tactile feedback. The board's posture measurements are smoothly corrected using a Kalman Filter, and the multi-sensor data is processed in real-time using FreeRTOS. The proposed I-SBB is shown to be effective in enhancing user concentration and engagement, as well as generating interest, by integrating with diverse content.

Analysis of Significance between SWMM Computer Simulation and Artificial Rainfall on Rainfall Runoff Delay Effects of Vegetation Unit-type LID System (식생유니트형 LID 시스템의 우수유출 지연효과에 대한 SWMM 전산모의와 인공강우 모니터링 간의 유의성 분석)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제48권3호
    • /
    • pp.34-44
    • /
    • 2020
  • In order to suggest performance analysis directions of ecological components based on a vegetation-based LID system model, this study seeks to analyze the statistical significance between monitoring results by using SWMM computer simulation and rainfall and run-off simulation devices and provide basic data required for a preliminary system design. Also, the study aims to comprehensively review a vegetation-based LID system's soil, a vegetation model, and analysis plans, which were less addressed in previous studies, and suggest a performance quantification direction that could act as a substitute device-type LID system. After monitoring artificial rainfall for 40 minutes, the test group zone and the control group zone recorded maximum rainfall intensity of 142.91mm/hr. (n=3, sd=0.34) and 142.24mm/hr. (n=3, sd=0.90), respectively. Compared to a hyetograph, low rainfall intensity was re-produced in 10-minute and 50-minute sections, and high rainfall intensity was confirmed in 20-minute, 30-minute, and 40-minute sections. As for rainwater run-off delay effects, run-off intensity in the test group zone was reduced by 79.8% as it recorded 0.46mm/min at the 50-minute point when the run-off intensity was highest in the control group zone. In the case of computer simulation, run-off intensity in the test group zone was reduced by 99.1% as it recorded 0.05mm/min at the 50-minute point when the run-off intensity was highest. The maximum rainfall run-off intensity in the test group zone (Dv=30.35, NSE=0.36) recorded 0.77mm/min and 1.06mm/min in artificial rainfall monitoring and SWMM computer simulation, respectively, at the 70-minute point in both cases. Likewise, the control group zone (Dv=17.27, NSE=0.78) recorded 2.26mm/min and 2.38mm/min, respectively, at the 50-minutes point. Through statistical assessing the significance between the rainfall & run-off simulating systems and the SWMM computer simulations, this study was able to suggest a preliminary design direction for the rainwater run-off reduction performance of the LID system applied with single vegetation. Also, by comprehensively examining the LID system's soil and vegetation models, and analysis methods, this study was able to compile parameter quantification plans for vegetation and soil sectors that can be aligned with a preliminary design. However, physical variables were caused by the use of a single vegetation-based LID system, and follow-up studies are required on algorithms for calibrating the statistical significance between monitoring and computer simulation results.

A Study on the Method of Producing the 1 km Resolution Seasonal Prediction of Temperature Over South Korea for Boreal Winter Using Genetic Algorithm and Global Elevation Data Based on Remote Sensing (위성고도자료와 유전자 알고리즘을 이용한 남한의 겨울철 기온의 1 km 격자형 계절예측자료 생산 기법 연구)

  • Lee, Joonlee;Ahn, Joong-Bae;Jung, Myung-Pyo;Shim, Kyo-Moon
    • Korean Journal of Remote Sensing
    • /
    • 제33권5_2호
    • /
    • pp.661-676
    • /
    • 2017
  • This study suggests a new method not only to produce the 1 km-resolution seasonal prediction but also to improve the seasonal prediction skill of temperature over South Korea. This method consists of four stages of experiments. The first stage, EXP1, is a low-resolution seasonal prediction of temperature obtained from Pusan National University Coupled General Circulation Model, and EXP2 is to produce 1 km-resolution seasonal prediction of temperature over South Korea by applying statistical downscaling to the results of EXP1. EXP3 is a seasonal prediction which considers the effect of temperature changes according to the altitude on the result of EXP2. Here, we use altitude information from ASTER GDEM, satellite observation. EXP4 is a bias corrected seasonal prediction using genetic algorithm in EXP3. EXP1 and EXP2 show poorer prediction skill than other experiments because the topographical characteristic of South Korea is not considered at all. Especially, the prediction skills of two experiments are lower at the high altitude observation site. On the other hand, EXP3 and EXP4 applying the high resolution elevation data based on remote sensing have higher prediction skill than other experiments by effectively reflecting the topographical characteristics such as temperature decrease as altitude increases. In addition, EXP4 reduced the systematic bias of seasonal prediction using genetic algorithm shows the superior performance for temporal variability such as temporal correlation, normalized standard deviation, hit rate and false alarm rate. It means that the method proposed in this study can produces high-resolution and high-quality seasonal prediction effectively.

Quantitative Analysis of Feldspar Mixture Samples Using the Rietveld Refinement Method (Rietveld Refinement 방법을 응용한 장석 혼합시료의 정량분석 연구)

  • Shim, Sang-Heon;Ahn, Jung-Ho;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • 제7권1호
    • /
    • pp.62-79
    • /
    • 1994
  • The quanttative and structural analysis of the binary standard mixtures of albite and quartz, and microcline and albite were carried out using the Rietveld refinement method in order to investigate the accuracy and precision of the method. The quantitative analysis using the Rietveld method results in a standard deviation of 4 wt % for the albite-quartz standard mixtures and 1 wt % for the microcline-albite standard mixtures, suggesting that its accuracy is far better than that of the conventional XRD method in which only a few selected peaks are utilized. Furthermore, the unit-cell parameters of component minerals in mixtures were also estimated accurately during the analysis. It was observed that the refined weight fractions deviate systematically from their measured values when the method is applied to the mixtures that contain minerals with different degrees of preferred orientation, such as albite-quartz mixtures. The preferred orientation parameters and R-values suggest that the systematic deviation is caused as a result of the preferred orientation effect of feldspar crystallites. It is evident that the preferred orientation corrections are of help for the accurate determination of unit-cell parameters, although they may not improve the result of quantitative analysis significantly. The refined weight fraction of the mineral with higher degree of preferred orientation in mixture is greater than the measured one. This is apparently caused by the effect of geometry of feldspar crystallites in the surface of the mounted sample. The Rietveld refinement method minimizes the problems inherent in the traditional XRD methods, such as the line overlap, primary extinction, and preferred orientation effect, by fitting every data point in a whole pattern explicitly. Furthermore, accurate unit-cell parameters as well as scale factors that can be obtained from the Rietveld refinement are used for the quqantification. The present stdudy demonstrates that the Rietveld method yields far more accurate analytical result than the conventional XRD quantitative analysis method does.

  • PDF

Development of Fertility Assumptions for the Future Population Projection (장래인구추계를 위한 출산력 가정치의 설정)

  • Jun, Kwang-Hee
    • Korea journal of population studies
    • /
    • 제29권2호
    • /
    • pp.53-88
    • /
    • 2006
  • The major aim of this paper is to develop a hypothetical set of age-specific fertility rates which are logically derived and reasonably accurate in the projection of future population. The first procedure is to select a generalized log-gamma distribution model, which includes Coale-McNeil nuptiality model, in order to estimate and project a set of age-specific fertility rates by birth cohort and birth order. The second is to apply the log-gamma model with an empirical adjustment to the actual data to estimate and project the future fertility rates for relatively young birth cohorts who did not complete their reproductive career. This study reconstructs or translates a set of cohort age-specific fertility rates into a set of period age-specific fertility rates which must be hypothesized in order to establish the broader framework of future population projection. For example, the fertility at age 20 in the year of 2020 is the fertility at age 20 for the cohort born in 1990, while the fertility at age 21 in the year of 2020 is the fertility at 21 for the cohort born in 1989. In turn, once a set of age-specific fertility rates for the cohorts who were born up to the year of 2010, it is possible for one to establish an hypothetical set of period age-specific fertility rates which will be needed to project the future population until the year of 2055. The difference in the hypothetical system of age-specific fertility rates between this study and the 2005 special population projection comes from the fact that the fertility estimation/projection model used in this study was skillfully exploited to reflect better actual trend of fertility decline caused by rise in marriage age and increasing proportion of those who remain single until their end of reproduction. In this regard, this paper argues that the set of age-specific fertility rates derived from this study is more logical and reasonably accurate than the set of those used for the 2005 special projection. In the population projection, however, the fundamental issue of the hypothetical setting of age-specific fertility rates in relation to the fertility estimation/projection model is about how skillfully one can handle the period effects. It is not easy for one to completely cope with the problem of period effects except for the a minor period adjustment based on recent actual data, along with the given framework of a cohort-based fertility estimation/projection model.