• Title/Summary/Keyword: 보정가공

Search Result 160, Processing Time 0.04 seconds

Measurement of Gravity Center for Rotor Blades by Compensation of Machining Error in Jig (지그의 가공오차 보정에 의한 블레이드 무게 중심 측정)

  • Kong, Jae-Hyun;Kim, Ki-Sung;Ye, Sang-Don;Chun, See-Young;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.41-47
    • /
    • 2010
  • There are many unbalanced models such as helicopter's rotor blades, small-sized precision motor in industrial applications. In the real products, their gravity center usually does not accord with the desired gravity center. If the deviation is large between them, it can be a major cause of vibration and noise as the part of model rotate. Therefore the gravity center in the rotational parts should be controlled properly because of static and dynamic balancing of the parts. In the research, the rotor blade of unmanned helicopter has been selected to obtain the high quality of balancing. In order to achieve the purpose, measuring system has been developed. In the system applied principle is three point weighting method, which is one of the Multiple-point Weighting Method. It has circle fitting for compensation of machining error, after measuring the values. From this study, the results showed that the proposed measurement procedure gives reliable and precise gravity center.

Compensating the Elliptical Trajectory of Elliptical Vibration Cutting Device (타원궤적 진동절삭기의 타원궤적 보정)

  • Loh, Byoung-Gook;Kim, Gi-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.789-795
    • /
    • 2011
  • In elliptical vibration cutting (EVC), cutting performance is largely affected by the shape of an elliptical path of the cutting tool. In this study, two parallel piezoelectric actuators were used to make an elliptical vibration cutting device. When harmonic voltages of $90^{\circ}$ out-of-phase are supplied to the EVC device, creation of an ideal elliptical trajectory whose major and minor axes are parallel to the cutting and thrust directions is anticipated from a kinematic analysis of the EVC device, however, the paths we experimentally observed showed significant distortions in its shape ranging from skew to excessive elongation of the major axis of the ellipse. To compensate distortions, an analytical model describing the elliptical path of the cutting tool was developed and verified with experimental results, and based on the analytical model, the distorted elliptical paths created at 100 Hz, 1 kHz, and 16 kHz were corrected for skew and elongation.

Development of quality control techniques for global climate observations (글로벌 기후 관측자료 품질관리 기법 개발)

  • Lee, Jae-Seung;Kim, Seon-Ho;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.104-104
    • /
    • 2019
  • 기후 관측자료의 경우 관측, 가공, 전송 중에 오류가 발생할 수 있으며, 특히 글로벌 기후자료는 다양한 조건을 가지고 있는 자료를 수집하였기 때문에 일반적으로 해당 국가 관측자료보다 품질이 낮다. 본 연구에서는 글로벌 기후 관측자료의 품질을 개선할 수 있는 품질관리 기법을 개발하고 국내 지역에 적용해보고자 한다. 연구대상지역으로 국내 대표도시 7 곳을 선정하였으며, 글로벌 기후자료는 NCDC (National Climatic Data Center)의 일 단위 GSOD (Global Surface Summary of the Day) 자료를 수집하였다. 품질관리는 강수와 기온에 대해서 실시하였으며 과정은 크게 이상치 검사, 이상치 및 결측치 보정, 연, 월 단위 기후 자료 산정으로 구분된다. 이상치 검사는 중복성 검사, 내적일치성 검사, 기후범위 검사, 공간동질성 검사를 기반으로 구성되어 있다. 이상치 및 결측치 보정은 인접 관측소의 자료를 보간하여 수행하였으며, 보간기법은 4 방향 역거리 가중법을 활용하였다. 연, 월 단위 자료 산정은 자료의 결측률을 고려하여 일 단위 자료를 연, 월 단위 자료로 변환하는 과정이다. 이상치 검사 결과 대부분의 이상치는 기후범위와 공간동질성 검사에서 발견되는 것으로 나타났으며, 중복성 및 내적일치성 검사는 이상치 검출 효과가 적은 것으로 나타났다. 결측치 및 이상치 보간 결과 추정된 자료와 관측값 간의 상관관계가 있는 것으로 나타나 활용성이 있었다. 본 연구는 글로벌 자료의 품질관리 기법을 제시하였다는 점에서 활용성이 있으며, 향후 품질관리 기법의 검증에 관한 연구를 수행할 필요가 있다.

  • PDF

A Study on Cutting Conditions and Finishing Machining of Si Material Using Laser Assisted Module (레이저 보조 모듈을 이용한 Si 소재의 절삭조건 및 보정가공에 관한 연구)

  • Young-Durk Park
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, a diamond turning machine and a laser-assisted machining module were utilized for the complex combined cutting of aspheric shapes and fine patterns on the surface of high-hardness brittle material, silicon. The analysis of material's form accuracy and corrective machining was conducted based on key factors such as laser output, rotational speed, feed rate, and cutting depth to achieve form accuracy below 1 ㎛ and surface roughness below 0.1 ㎛. The cutting condition and corrective machining methods were investigated to achieve the desired form accuracy and surface roughness. The rotational speed of the spindle and the linear feed rate of the diamond turning machine were varied in five stages for the cutting condition test. Surface roughness and form accuracy were measured using both a contact surface profilometer and a non-contact surface profilometer. The experimental results revealed a tendency of improved surface roughness with increased rotational speed of the workpiece, and the best surface roughness and form accuracy were observed at a feed rate of 5 mm/min. Furthermore, based on the cutting condition experiments, corrective machining was performed. The experimental results demonstrated an improvement in form accuracy from 0.94 ㎛ to 0.31 ㎛ and a significant reduction in the average value of the surface roughness curve from 0.234 ㎛ to 0.061 ㎛. This research serves as a foundation for future studies focusing on the machinability in relation to laser output parameters.

Real-Time Quad-Copter Tracking With Multi-Cameras and Ray-based Importance Sampling (복수카메라 및 Ray-based Importance Sampling을 이용한 실시간 비행체 추적)

  • Jin, Longhai;Jeong, Mun-Ho;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.899-905
    • /
    • 2013
  • In this paper, we focus on how to calibrate multi-cameras easily and how to efficiently detect quad-copters with small-numbered particles. Each particle is a six dimensional vector that is composed of 3D position and 3D orientation of a quad-copter in the space. Due to curse of dimensionality, that leads to explosive computational costs with a large amount of high-dimensioned particles. To detect efficiently, we need to put more particles in very promising spaces and few particles in other spaces. Though computational cost is lowered by minimizing particles, in order to track a quad-copter with multiple cameras in real-time, multiple images from the cameras should be synchronized and analyzed. Therefore, lots of the computations still need to be done. Because of this, GPGPU(General-Purpose computing on Graphics Processing Units) is implemented for parallel computing. This method has been successfully tested and gives accurate results in practical situations.

Raw Sensor Single Image Super Resolution Using Color Corrector-Attention Network (코렉터 어텐션 네트워크을 이용한 로우 센서 영상 초해상화 기법)

  • Paul Shin;Teaha Kim;Yeejin Lee
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.90-99
    • /
    • 2023
  • In this paper, we propose a super resolution network for raw sensor image which data size is lower comparatively to RGB image. But the actual capabilities of raw image super resolution depends on color correction because its absent of camera post processing that leads to unintended result having different white balance, saturation, etc. Thus, we introduce novel color corrector attention network by adopting the idea of precedent raw super resolution research, and tune to the our faced problem from data specification. The result is not superior to former researches but shows decent output on certain performance matrix. In the same time, we encounter new challenging problem of unexpected shadowing artifact around image objects that cause performance declination despite its good result overall. This problem remains a task to be solved in the future research.

Adaptive Control of End Milling Machine to Improve Machining Straightness (직선도 개선을 위한 엔드밀링머시인 의 적응제어)

  • 김종선;정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.590-597
    • /
    • 1985
  • A recursive geometric adaptive control method to compensate for machining straightness error in the finished surface due to tool deflection and guideway error generated by end milling process is developed. The relationship between the tool deflection and the feedrate is modeled by a modified Taylor's tool life equation. Without a priori knowledge on the variations off cutting parameters, time varying parameters are then estimated by an exponentially windowed recursive least squares method with only post-process measurements of the straightness error. The location error is controlled by shifting the milling bed in the direction perpendicular to the finished surface and adding a certain amount of feedrate with respect to the tool deflection model before cutting. The waviness error is compensated by adjusting the feedrate during machining. Experimental results show that location error is controlled within a range of fixturing error of the bed on the guideway and that about 60% reduction in the waviness error can be achieved within a few steps of parameter adaption under wide operating ranges of cutting conditions even if the parameters do not converge to fixed values.

Autonomous Compensation of Thermal Deformation during Long-Time Machining Process (공작기계 장시간 가공중 열변형의 CNC 자율보정 기술)

  • Kim, Dong-Hoon;Song, Jun-Yeob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2014
  • The biggest factors, which lower the machining accuracy of machine, are thermal deformation and chatter vibration. In this article, we introduce the development case of a device and technology that can automatically compensate thermal deformation errors of machine during long-time processing on the machine tool's CNC (Computerized Numerical Controller) in real time. In machine processing, the data acquisition of temperature signal in real time and auto-compensation of the machine origin of machine tools depending on thermal deformation have significant influence on improving the machining accuracy and the rate of operation. Thus, we attempts to introduce the related contents of the development we have made in this article : The development of a device that embedded the acquisition part of temperature data, linear regression to get compensation value, compensation model of neural network and a system that compensates the machine origin of machine tool automatically during manufacturing process on the CNC.

A New Approach to Reduce Geometric Error in FIB Fabrication of Micro Structures (집속이온빔을 이용한 미세구조물 가공의 형상정밀도 향상)

  • Kim K.S.;Jung J.W.;Min B.K.;Lee S.J.;Park C.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1186-1189
    • /
    • 2005
  • Focused Ion Beam machining is an attractive approach to produce nano-scale 3D structures. However, like other beam-based manufacturing processes, the redeposition of the sputtered material during the machining deteriorates the geometric accuracy of ion beam machining. In this research a new approach to reduce the geometric error in FIB machining is introduced. The observed redeposition phenomena have been compared with existing theoretical model. Although the redeposition effect has good repeatability the prediction of exact amount of geometric error in ion beam machining is difficult. Therefore, proposed method utilizes process control approach. Developed algorithm measures the redeposition amount after every production cycle and modifies next process plan. The method has been implemented to a real FIB machine and the experimental results demonstrated considerable improvement of five micrometer-sized pocket machining.

  • PDF

Study on the Error Compensation in Strain Measurement of Sheet Metal Forming (박판성형 변형률 측정 오차보정에 관한 연구)

  • 한병엽;차지혜;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.270-273
    • /
    • 2003
  • The strain measurement of the panel in the sheet metal forming is essential work which provides experimental data needed to die design, process design, and product inspection. To measure efficiently the complex geometry strain, the 3-dimensional automative strain measurement system, which has high accuracy in theory, but has some 3∼5% errors in practice, is often used. The object of this study is to develop the error compensation technology to eliminate the strain, errors resulted when formed panels are measured using an automated strain measurement system. To achieve the study object, the position error calibration method correcting coordinates of the grid node recognized by a camera using error functions is suggested. Then the position errors were found by calculating the difference in the position of the cube node between real coordinates and measured coordinates in toms of node coordinates and the error calibration equations were derived by regressing the position errors. In order to show the validation of the suggested position error calibration method, finite element analysis and current calibration method was performed for the initial-blankformed.

  • PDF