• Title/Summary/Keyword: 보일러

Search Result 2,431, Processing Time 0.026 seconds

Energy Saving Effect for High Bed Strawberry Using a Crown Heating System (고설 딸기 관부 난방시스템의 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kwon, Jin Kyung;Kang, Youn Koo;Lee, Jae Han;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.420-428
    • /
    • 2019
  • This study is the heating energy saving test of the high-bed strawberry crown heating system. The system consists of electric hot water boiler, thermal storage tank, circulation pump, crown heating pipe(white low density polyethylene, diameter 16mm) and a temperature control panel. For crown heating, the hot water pipe was installed as close as possible to the crown part after planting the seedlings and the pipe position was fixed with a horticultural fixing pin. In the local heating type, hot water at $20{\sim}23^{\circ}C$ is stored in the themal tank by using an electric hot water boiler, and crown spot is partially heated at the setting temperature of $13{\sim}15^{\circ}C$ by turning on/off the circulation pump using a temperature sensor for controlling the hot water circulation pump which was installed at the very close to crown of strawberry. The treatment of test zone consisted of space heating $4^{\circ}C$ + crown heating(treatment 1), space heating $8^{\circ}C$(control), space heating $6^{\circ}C$ + crown heating(treatment 2). And strawberries were planted in the number of 980 for each treatment. The heating energy consumption was compared between November 8, 2017 and March 30, 2018. Accumulated power consumption is converted to integrated kerosene consumption. The converted kerosene consumption is 1,320L(100%) for space $8^{\circ}C$ heating, 928L(70.3%) for space $4^{\circ}C$ + crown heating, 1,161L($88^{\circ}C$) for space $6^{\circ}C$ + crown heating). It was analyzed that space $4^{\circ}C$ + pipe heating and space $6^{\circ}C$ + crown heating save heating energy of 29.7% and 12% respectively compared to $8^{\circ}C$ space heating(control).

Experimental Study on the Agglomeration Characteristics of Coal and Silica Sand by addition of KOH (KOH 첨가에 의한 석탄 및 유동사의 응집특성에 대한 실험적 연구)

  • Cho, Cheonhyeon;Gil, Eunji;Lee, Uendo;Lee, Yongwoon;Kim, Seongil;Yang, Won;Moon, Jihwan;Ahn, Seokgi;Jung, Sungmook;Jeong, Soohwa
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.46-53
    • /
    • 2022
  • The agglomeration characteristics of coal and silica sand were investigated under various conditions using mixed samples consisting of coal, silica sand, and potassium hydroxide, which is an agglomeration accelerator. The samples were prepared by either physically mixing or using aqueous solutions. The experiments using the physically mixed powder samples were performed with a two hour reaction time. The results showed that the number of aggregates generated increased as the reaction temperature and the total potassium content increased. The experiments using aqueous solutions were performed at 880 ℃, which is the operating temperature of a fluidized bed boiler, and at 980 ℃, which assumes a local hot spot. The amount of agglomeration generated as the reaction time increased and the total potassium content increased was identified. In the experiment performed at 880 ℃, the amount of aggregate generated clearly increased with the reaction time, and in the experiment performed at 980 ℃, assuming a local hot spot, a large amount of aggregate was generated in a relatively short time. The aggregates became harder as the potassium content increased. When the total potassium content was less than 1.37 wt.%, the aggregates were weak at both temperatures and collapsed even with a slight impact. Additionally, the surface characteristics of the silica sand and ash aggregates were observed by SEM-EDS analysis. The analysis revealed a large amount of potassium at the bonding sites. This result indicates that there is a high possibility of aggregation in the form of a eutectic compound when the alkali component is increased.

Analysis of Predicted Reduction Characteristics of Ash Deposition Using Kaolin as a Additive During Pulverized Biomass Combustion and Co-firing with Coal (미분탄 연소 시스템에 바이오매스 혼소시 카올린 첨가제 적용에 따른 회 점착 저감 특성 예측 연구)

  • Jiseon Park;Jaewook Lee;Yongwoon Lee;Youngjae Lee;Won Yang;Taeyoung Chae;Jaekwan Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.193-199
    • /
    • 2023
  • Biomass has been used to secure renewable energy certificates (REC) in domestic and overseas coal-fired power plants. In recent years, biofuel has been diversified from traditional wood pellets to non-woody biomass. Non-woody biomass has a higher content of alkaline metals such as K and Na than wood-based biomass, resulting in a lower melting point and an increase in slagging on boiler tubes, which reduces boiler efficiency. This study analyzed the effect of kaolin, an additive commonly used to increase melting points, on biomass co-firing to coal through thermochemical equilibrium calculations. In a previous experiment on biomass co-firing to coal conducted at 80 kWth, it was interpreted that the use of kaolin actually increased the amount of fouling. In this study, analysis showed that when kaolin was added, aluminosilicate compounds were generated due to Al2O3, which is abundant in coal, and mullite was formed. Thus, it was confirmed that the amount of slag increased when more kaolin was used. Further analysis was conducted by increasing the biomass co-firing rate from 0% to 100% at 10% intervals, and the results showed non-linear liquid slag generation. As a result, it was found that the least amount of liquid slag was generated when the biomass co-firing rate was between 50 and 60%. The phase diagram analysis showed that high melting point compounds such as leucite and feldspar were most abundantly generated under these conditions.

A Study on the Development of Marine Fuel Oil Homogenizer for Fuel Costs Saving (연료비 절감을 위한 선박용 연료유 균질기 개발에 관한 연구)

  • Han, Sang-Goo;Choi, Jung-Sik;Park, Ro-Seong;Kim, Dae-Hun;Ryu, Kyoung-Boo;Chun, Kang-Woo;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.584-590
    • /
    • 2012
  • In this study, we have conducted a work on homogenizer development which is operated by high shearing force generated by stator and rotor inside it. To investigate the performance for homogenization and atomization of homogenizer, Bunker-C (IFO 380 cSt) was used as a fuel for experiment. Pre-treatment of bunker-C was carried out with homogenizer developed in this study. Oil purifier was used to investigate effect of oil sludge reduction after pre-treatment. Experimental result showed that the amount of sludge of fuel oil after pre-treatment with homogenizer has decreased by 13 %. To confirm combustion efficiency, Bunker-C which have pre-treatment with homogenizer and purified after are burned in boiler system. The result showed that CO concentration in exhaust gas was decreased. These results mean that if the homogenizer which is developed in this study for marine fuel oil is applied on real vessels, oil costs and operating costs can be reduced.

The Duel Fuel Combustion of Low Calorific Biomass Syngas with Fuel Oil (저열량 바이오매스 합성가스의 혼소특성)

  • Yoon, Sang-Jun;Kim, Young-Ku;Jeon, Chang-Joon;Lee, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.860-865
    • /
    • 2012
  • Although biomass syngas is very low calorific gas, it is utilized by means of dual fuel combustion technology in the fields of industrial furnace and boiler as a substitute oil technology. The basic structure of duel fuel combustion burner is designed so that low caloric gas fuel is supplied around an oil burner in the middle. In the present study, three types of mixing burners were manufactured to conduct performance experiment. Low caloric gas was evenly distributed around the oil burner and the method of changing the angle of gas nozzle was applied. CO generation decreased according to the increase of the amount of air for combustion. In addition, the shapes and colors of flame changed according to the proportions of gas and oil used. Remained flame after combustion was from the lack of atomization at the exit of oil burner. Although it was difficult to maintain the optimum air ratio due to different required air ratio for oil and syngas, stable combustion was able to maintained within excess oxygen concentration of 4.7~8.2%. From this study, it was shown that the oil atomization at the exit of fuel oil nozzle was promoted by the increased rate of syngas combustion and the CO concentration in flue gas lower than only fuel oil combustion.

코로나 방전을 이용한 하이브리드 사이클론 집진 장치 특성 연구

  • Choe, Seong-Chang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.259-260
    • /
    • 2012
  • 산업화가 발달됨에 따라 대기 오염 물질은 점차 증가하고 있는 추세에 있고 특히 기름 및 석탄 연소 보일러, 자동차, 제철, 시멘트 플렌트, 소각로 등은 미세 분진을 발생시키는 주원인이 되어 왔다. 최근 대기환경법은 오염 분진의 중량 규제로부터 $10{\mu}m$ 미만의 PM10에서 $2.5{\mu}m$ 미만의 PM2.5의 미세 분진에 대한 규제로 점차 심화되고 있으나, 이러한 미세분진은 고전적인 제거 방법으로는 매우 어려우며 고가의 HEPA 필터를 사용하여야 한다. 한편 코로나 방전을 이용하는 전기 집진은 미세 먼지 제거에 매우 효율적이어서 $1{\mu}m$ 미만의 미세 분지도 99%까지 제거가 가능하다는 장점이 있지만 입자크기가 클 경우에는 효율이 떨어지는 단점이 있다. 한편 사이클론 집진기는 매우 오래전부터 개발되어 사용되어 왔는데 가격이 저렴하고 운영비가 적게 들며 $10{\mu}m$ 이상의 먼지는 99% 이상 제거가 가능하여 산업현장에서 오랜 기간 사용되어 왔지만 입자크기가 $10{\mu}m$ 미만으로 가면 집진율이 급격히 떨어지는 단점을 가지고 있다. 본 연구에서는 기존의 사이클론 집진기의 구조를 기본으로하여 사이클론 집진기 내부에 플라즈마 방전을 설치하여 원심력에 의한 집진과 코로나 방전에 의한 전기 집진을 동시에 수행할 수 있도록 하이브리드 사이클론 집진기를 제작하였다. 제작된 사이클론 집진기는 직경 30 cm 높이 120 cm의 사이클론 구조를 가지고 있으며 1 hp의 터보송풍기를 장착하여 $20m^3$/min 이상의 유량을 처리할 수 있도록 설계 제작되었다. 제작된 하이브리드 사이클론 집진기의 성능을 평가하기 위하여 $10m^3$의 체적을 가지는 테스트 챔버 내부에 사이클론 집진기를 설치하고 향을 태워 미세 먼지를 발생시킨 후 다양한 조건에서 집진 성능을 측정하여 보았다. 미세 먼지의 경우 사이클론을 작동시키지 않아도 테스트 챔버 벽면에 흡착되어 초기에는 급격히 감소하는 경향을 보여주나 일정 시간이 경과한 후에는 매우 느리게 감소하는 현상이 관찰 되었다. 코로나 방전을 하지 않고 오존 파괴기에 활성탄만 충진한 상태에서 사이크론을 작동시킬 경우 지속적으로 천천히 감소하는 경향을 보여주었으며, 코로나 플라즈마를 방전시킨 경우 미세 먼지는 HEPA filter를 장착한 것보다도 조금 빠르게 미세먼지를 제거하였다. 챔버 내부의 미세먼지가 초기 값의 1/10에 도달하는 시간은 코로나 방전 전류가 증가할수록 짧아지는 경향을 보여주었으며 최적 조건에서 100초 이내에 90% 이상 제거가 가능하였다. 하이브리드 사이클론 집진기는 집진 뿐 만 아리라 VOC 성분도 분해가 가능하여 유해물질을 제거하는 능력이 있다. 유해 가스 제거 능력을 실험하기 위하여 분진제거 실험에 사용된 챔버 안에 아세톤을 증발시켜 50 ppm이 되도록 한 후 다양한 조건에서 유해물질 제거 실험을 수행하였다. 미세먼지와는 달리 장비를 작동하지 않을 경우 매우 느리게 아세톤 농도가 감소하였다. 이는 미세 먼지와는 달리 흡착이 발생하지 않고, 측정 챔버 자체가 완전한 밀폐가 이루어지지 않아 자연적으로 조금씩 외부로 누출되기 때문으로 판단된다. 코로나 플라즈마만 방전시켰을 경우 초기 농도의 80%가 제거되는데 걸리는 시간은 약 28분 정도로 코로나 플라즈마가 VOC 제거에 효과가 있음은 확인하였으나 제거율이 그리 높지 않음을 알 수 있었다. 한편 오존 파괴를 위해 활성탄으로 충진 된 오존파괴기를 통과시킨 경우는 약 12분 경과 후 80%가 제거됨을 확인할 수 있었으나 그 이후에는 VOC의 감소가 매우 느리게 진행됨을 알 수 있었다. 한편 활성탄 대신 $MnO_2$ 복합촉매로 충진 된 오존파괴기를 통과한 경우 약 3분 정도 경과 후 80%의 아세톤이 제거됨을 관찰할 수 있었으며 코로나 플라즈마를 작동시키면서 $MnO_2$ 복합촉매로 충진 된 오존파괴기를 통과시킨 경우 약 2분 정도 경과 80% 이상의 아세톤이 제거되어 코로나 플라즈마와 복합촉매를 사용할 경우 VOC 성분이 효과적으로 제거됨을 알 수 있었다.

  • PDF

Reaction Characteristics of Kaolinite-based Additives and Alkali Salts (Kaolinite 계열의 첨가제와 알칼리염의 반응 특성)

  • Jun, HyunJi;Choi, Yujin;Shun, Dowon;Han, Keun-Hee;Bae, Dal-Hee;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.221-227
    • /
    • 2020
  • When the waste solid fuel (SRF, Bio-SRF) is burnt in a boiler, a problem occurs in the combustion process involving the alkali components (Na, K) contained in large amounts in the fuel. The alkaline component has a low melting point, which usually forms low melting point salt in the temperature of the furnace, with the resulting low melting point salts attaching to the heat pipe to form a clinker. Various additives are used to suppress clinker generation, and the additive based on the kaolinite has alkali-aluminum-silica to inhibit the clinker. In this study, the reactivity of the additives based on the kaolinite was compared. The additives utilized were R-kaolinite, B-kaolinite, and A-kaolinite. Also silica and MgO were sourced as the comparison group. The experimental group was employed as a laboratory-scale batch horizontal reactor. The additive and alkaline salts were reacted at a weight ratio of 1 : 1, and the reaction temperature was performed at 900 ℃ for 10 hours. The first measurement of HCl occurring during the experiment was performed 30 minutes after the detection tube was used, and the process was repeated every hour after the experiment. After the reaction, solid residues were photographed for characterization analysis by means of an optical microscope. The reaction characteristics of the kaolinite were confirmed based on the analysis results.

Application on the CFBC Fly Ash as a Stimulant to Improve the Early Strength of Hydration Portland Cement (슬래그시멘트 초기강도 증진을 위한 자극제로서 CFBC Fly ash의 활용연구)

  • Park, JongTak;Oh, Hongseob;Jung, Gwon Soo;Kang, Chang Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.8-16
    • /
    • 2020
  • As the circulating fluidized bed combustor(CFBC) boilers system to generate electric power increase in order to reduce environmental pollution, a lot of CFBC fly ashes(CFFA) are produced. CFFA has limited use in concrete because it contains free CaO, which can cause cement expansion and rapid initial hydration. In this study, the microstructure and the initial development of compressive strength characteristics were experimentally analyzed to be used as a stimulant to replace natural gypsum by mixing with CFFA and phosphate gypsum to enhance the initial strength of portland blast furnace slag cement. The recycled gypsum was used as flue-gas desulfurization gypsum and phosphate gypsum. Experimental results show that the initial strength development is relatively lower when CFFA and dihydrate gypsum are mixed, but the strength improvement effect of the mixture with CFFA and anhydrous gypsum as an anhydritedII typed crystalized gypsum is similar to that of natural gypsum. As a result, it w as analyzed to have high possibility of use for stimulant of portland blast furnace slag cement.

Development and performance evaluation of the porous tube dilutor for real-time measurements of fine particles from high humidity environments (고수분 환경에서 미세먼지 실시간 측정을 위한 다공 튜브형 희석장치의 개발 및 성능 평가)

  • Woo, Chang Gyu;Hong, Ki-Jung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;An, Jeongeun;Kang, Su Ji;Chun, Sung-Nam
    • Particle and aerosol research
    • /
    • v.13 no.3
    • /
    • pp.105-110
    • /
    • 2017
  • Real-time measurements of fine particles from stack emission gases are necessary due to the needs of continuous environmental monitoring of PM10 and PM2.5. The porous tube dilutor using hot and cold dilutions was developed to measure fine particles without condensable particles from highly humid emission gases and compared to the commercialized ejector-type dilutor. Particle size distributions were measured at the emission gases from a diesel engine and a coal-fired boiler. The porous tube dilutor could successfully measure the accumulation mode particles including relatively large particles more than $3{\mu}m$ without nuclei particles, while the ejector dilutor detected some condensable particles and could not detect large particles. The porous tube dilutor could successfully remove the already condensed water droplet particles generated by a humidifier in a $30m^3$ chamber.

Application of Real Option based Life Cycle Cost Analysis for Reflecting Operational Flexibility in Solar Heating Systems (실물옵션 기반의 LCC분석을 통한 태양열난방시스템의 운영유연성 반영 방안)

  • Choi, Ju-Yeong;Kim, Hyeong-Bin;Son, Myung-Jin;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.70-79
    • /
    • 2015
  • With the rise of the interest in a renewable system, the importance of the Life Cycle Cost Analysis(LCCA), an economic evaluation tool, has been increasing. However, there is an inevitable gap between a real cost and an estimation from LCCA because of the uncertainty of the external environment in real world. As the input variables in an analysis, such as a real discount rate and an energy cost, ares subject to change as time goes by, strategic decision on the current operating system is made depending on the real cost. Current economic evaluation approaches have treated only the fluctuation of input variables without consideration of the flexibility in operation, which has consequently led to the impairment on the reliability of LCCA. Therefore, new approach needs to be proposed to consider both the uncertainty of input variables and operational flexibility. To address this issue, the application of the Real Option to LCCA is presented in this study. Through a case analysis of LCCA of a solar heating system, the limits and current status of LCCA are identified. As a result, quantitative presentation of strategic decisions has been added in the new approach to implement the traditional approach.