비공식적 환경에서의 과학 교육이 매우 중요함에도 불구하고 비형식 과학교육(ISL)과 그 영향에 대한 경향 분석 연구가 부족한 것이 현실이다. 이에 본 논문의 목적은 ISL의 교육적 효과와 활용 방안에 대해 알아보고, 향후 ISL 연구 방향에 대한 지침을 주는데 있다. 이 연구는 2010년부터 2019년까지 발표된 특정 ISL 관련 논문을 분류하고, 비형식 교육의 효과 측정에 사용되는 GLO의 각 요소와 비교 분석하였다. 분석된 자료는 SPSS, Chi-Square를 통해 부분별로 적합도를 확인했다. 결론적으로 연구자들은 'GLO'의 5가지 성과지표 중 '지식과 이해'와 '태도 및 가치'를 추구하기 위해 ISL을 활용하고 있는 것으로 나타났다. 반면에 '기술'과 '즐거움, 영감 및 창의성'에는 가장 적은 기대를 하는 것으로 나타나서, 향후 이러한 부분에서의 보완이 요구된다. 또한 이 연구를 통해 다양한 교육 종사자들에게 비형식 과학교육 관련 프로그램 개발과 향후 연구를 위한 방향을 제시하고자 한다.
본 연구는 산학일체형 도제학교의 도제 프로그램이 학교 교육과정에 어떻게 편성되었는지를 종합적으로 분석하여 도제 프로그램 개발과 도제 교육과정 편성을 위한 제언을 제시하고자 한다. 이러한 연구의 목적을 달성하기 위하여 1~2차 33개 도제학교의 도제 교육과정 현황 자료를 분석하였으며 그 결과는 다음과 같다. 첫째, '학과'와 '인력 양성 분야 및 목표', '학과'와 '자격' 간의 적절성(연관성)은 도제반과 일반반이 비슷하였으나 '인력 양성 분야 및 목표'와 '자격' 간의 적절성(연관성)은 도제반이 일반반보다 높은 편이다. 둘째, 도제 프로그램의 필수 능력단위와 선택 능력단위는 Off-JT와 OJT에 비교적 균등하게 편성되어 있다. 셋째, 도제 프로그램의 능력단위는 2015 개정 교육과정의 NCS 실무과목뿐만 아니라 2009 개정 교육과정의 전문교과 교과목에도 편성되어 있다. 넷째, 도제 프로그램의 능력단위와 학교 교육과정 전문교과 과목 간의 연관성은 대체로 높으나 연관성이 낮은 학교도 상당 수 있다. 다섯째, 도제 프로그램 능력단위의 학기별 편성 위계성은 대체로 높으나 위계성이 낮은 학교도 상당수 있다. 이상의 결과에 따라 도제학교의 교육과정 변경 승인 기간 유예 적용, NCS 능력단위 수정 보완 전후 매칭표 보급, 고시외 실무과목의 편성, 기업특화과목의 신설, 도제학교 교육과정에 대한 모니터링과 컨설팅을 정책적 제언으로 제시한다.
본 연구는 최근의 사회적 분위기 및 대학생의 진로행동 특성을 포함하고 있는 진로준비행동검사를 표준화 검사로 개발하는데 목적이 있다. 연구의 목적을 달성하기 위해 1차 개발과정을 거쳐 실험제작된 '대학생용 진로준비행동검사(2011)'를 진로준비행동의 학문적 개념과 최근 대학생의 특성을 고려하여 전체적으로 검토하고 수정 보완한 후, 표준화 검사로 제작하고 그 타당성을 검증하였다. 이를 위해 4년제 대학생을 대상으로 성별, 학년, 전공계열 및 대학 소재 지역을 고려하여 예비조사와 본조사를 실시하였고, 학습영역의 11문항, 상담 및 정보수집영역의 12문항, 취업실전영역의 7문항, 총 30개 문항으로 구성된 표준화 검사가 개발되었다. 개발된 검사의 신뢰도, 구인타당도, 변별타당도 및 공인타당도를 산출하여 검사의 양호도를 검증하였다. 또한 구조방정식모형의 적합도를 분석하여 3개 하위영역과 개별문항의 구조가 적절함도 확인하였다. 규준집단의 진로준비행동 수행의 정도는 보편적으로 학년이 올라갈수록 높았으나 2학년과 3학년이 거의 유사하였으며, 이공계나 예체능계보다 인문사회계열의 수행빈도가 유의하게 높았다. 그러나 도움을 받고 있는 정도에 있어 성별간, 전공계열간 차이는 없었으며, 학년에 따라서도 4학년이 다른 학년보다 유의하게 높을 뿐 큰 차이는 보이지 않았다. 본 연구는 '대학생용 진로준비행동 표준화 검사'를 사회적 시대적 변화를 반영하여 체계적으로 개발한 것으로서 향후 대학생의 진로 및 취업지도에 활용될 수 있을 것이라 기대된다.
건설현장에서는 수많은 중장비와 작업자가 다양한 작업을 동시다발적으로 수행하기 때문에 복잡하고 위험한 상황이 자주 발생한다. 복잡한 현장에서 중장비가 단독으로 작업할 경우 운전자의 시야제한, 판단오류 등으로 인해 안전사고가 발생할 수 있으며, 이에 따라 중장비는 신호수와의 상호작용을 통해 주변 상황에 대한 정보를 수집하면서 작업을 수행해야 한다. 중장비를 자동으로 모니터링하고 위험상황을 탐지하기 위해 많은 컴퓨터비전 기술들이 개발되었지만, 기존의 방법들은 중장비 단독작업 인식에 필요한 중장비와 신호수 간 상호작용을 고려하지 않았다는 한계가 있다. 이러한 한계를 보완하기 위해 본 연구는 중장비-신호수 간의 상호작용을 고려한 컴퓨터비전 기반 중장비의 단독작업 자동 인식 모델을 제안함을 목표로 한다. 개발된 모델을 검증하기 위해 실제 건설현장으로부터 영상 데이터를 수집하여 실험을 수행하였다. 그 결과, 학습된 모델은 중장비와 사람을 83.4 %의 정확도로 인식하였고, 일반 작업자와 신호수를 84.2 %의 정확도로 분류하였으며, 중장비-신호수 간 상호작용 또한 95.1 %의 높은 정확도로 분석하였다. 본 연구결과는 건설현장에서 위험한 상황을 초래할 수 있는 중장비의 단독작업을 사전에 탐지하여 안전사고를 예방할 수 있다.
본 연구에서는 도로 포장 유지관리에 필요한 핵심정보를 생산해 낼 수 있는 저비용·고효율 포장상태 모니터링 기술을 개발하고자 하였다. 특히 시각정보와 고가 센서에 의존하는 기존 장비의 단점을 보완하기 위해 소음과 인공지능 기반의 포장상태등급 평가시스템을 고안하였다. 시스템 개발을 위한 아이디어 정립부터 기능 정의, 정보흐름 및 아키텍쳐 설계 과정을 거쳤으며, 생산된 프로토타입에 대한 성능 검증과 활용 전주기에 대한 실증 평가를 수행하였다. 그 결과, 높은 수준의 인공지능 평가 신뢰도가 확보되었으며, 하드웨어와 소프트웨어적 요소 외에도 시스템 활용에 관한 짜임새 있는 가이드라인이 개발되었다. 또한 현장평가 과정을 통해 비전문가도 쉽고 빠른 조사와 분석이 가능하고, 직관적인 시각적 정보 제공을 통해 관리자의 업무 지원이 가능함도 확인하였다. 반면에 학습에 고려되지 않은 외부 조건에 대한 선행 판별 기술, 시스템 간소화, 가변 주행속도 대응 기술 등 기술의 완성도 제고도 필요함을 알 수 있었다. 본 연구를 시작으로 1960년대 이후 반세기 이상 지속되어온 포장상태 모니터링 기술의 새로운 패러다임이 제시되길 기대한다.
지능정보사회의 도래와 미래 인재 육성을 위한 인공지능 교육이 교육계의 주목을 받으며 교원의 인공지능대학원 과정 또한 개설, 운영 중이며 올해 신설된 AI교육 대학원의 교육과정은 각 대학의 여건을 고려하여 자체적으로 편성되어있다. 이에 본 연구에서는 교육대학원에서 보다 효과적이고 교육적 가치를 높일 수 있는 AI교육과정이 향후 개발될 수 있도록 교육과정 개발의 방향을 탐색하고자 한다. 본 연구에서 제안한 교육대학원 AI교육과정은 Backward 설계를 토대로 Bloom의 디지털 텍사노미, Bruner의 나선형 교육과정 구성 원리를 포함하여 '내용영역', '수준', '교수학습방법' 등 3가지의 요소로 구성하고자 하였다. 연구에서 제시한 AI교육과정개발 방향을 토대로 국내 교육대학원의 AI교육과정이 좀 더 내실화되길 바라며, 향후 본 연구에서 제시한 교육과정을 수정·보완하여 초·중등학교의 AI교육과정 구성에도 활용할 수 있을 것이라 기대한다.
기존의 한국어 품사 태깅 방식은 복합어를 단위 형태소들로 분해하여 품사를 부착하므로 형태소 태그가 세분화되어 있어서 태거의 활용 목적에 따라 불필요하게 복잡하고 다양한 어절 유형들이 생성되는 단점이 있다. 딥러닝 언어처리에서는 키워드 추출 목적으로 품사 태거를 사용할 때 복합조사, 복합어미 등 문법 형태소들을 단위 형태소로 분할하지 않는 토큰화 방식이 효율적이다. 본 연구에서는 어절을 형태소 단위로 토큰화할 때 어휘형태소 부분과 문법형태소 부분 두 가지 유형의 토큰으로만 분할하는 Head-Tail 토큰화 기법을 사용하여 품사 태깅 문제를 단순화함으로써 어절이 과도하게 분해되는 문제점을 보완하였다. Head-Tail 토큰화된 데이터에 대해 통계적 기법과 딥러닝 모델로 품사 태깅을 시도하여 각 모델의 품사 태깅 정확도를 실험하였다. 통계 기반 품사 태거인 TnT 태거와 딥러닝 기반 품사 태거인 Bi-LSTM 태거를 사용하여 Head-Tail 토큰화된 데이터셋에 대한 품사 태깅을 수행하였다. TnT 태거와 Bi-LSTM 태거를 Head-Tail 토큰화된 데이터셋에 대해 학습하여 품사 태깅 정확도를 측정하였다. 그 결과로, TnT 태거는 97.00%인데 비해 Bi-LSTM 태거는 99.52%의 높은 정확도로 품사 태깅을 수행할 수 있음을 확인하였다.
팬데믹으로 인한 사회적 거리 두기 시작으로 비접촉 사회를 형성하였다. 접촉을 제한하는 언 콘택트 시대가 도달함으로써 우리 사회 및 경제생활뿐 아니라 교육 활동에도 지대한 영향을 미치고 있다. 이 같은 감염병 사태에 대응하여 대학을 비롯한 모든 교육 기관들은 비대면 온라인 수업을 시행하였다. 특히, 예체능을 비롯한 실무 형태 위주의 학과 수업들은 비대면으로 인한 제한된 환경으로 많은 어려움을 겪고 있다. 가창 수업은 주로 1:1 대면 개인지도 또는 단체 수업 방법에서 비접촉 시대로 시행된 비대면 수업 전환으로 과도기를 경험하고 있다. 전통적인 교육 방식에 머물러 있던 국내 학교 현장에서 코로나 19 이후 비접촉 시대를 맞이하여 기술을 혁신하는 에듀테크가 본격화 할 것으로 전망되는 가운데 가속화된 교육 혁신에 대비하여 비대면 실기 수업이 나아갈 방향에 대해 살펴볼 필요가 있다. 본 연구는 언택트 가창 수업 방법연구를 위해 먼저 비접촉 사회로 인한 국내 대학 현황과 가창 수업 형태를 살펴본다. 그 사례 연구로 가창 수업 방법을 제시하고 그 수업을 수강한 학생들과 교수들의 설문 조사와 인터뷰를 진행하였다. 그와 더불어 비대면 가창 수업의 장단점을 조사하고, 만족하는 수업 방법의 연구결과로 '가창 녹화 모니터링 및 선행학습', '즉각적인 영상자료 보컬 분석 및 보충 음악 이론'이 두 가지 구성요소를 도출할 수 있었다. 시대적 변화와 함께 효과적인 비접촉 가창 수업을 위해서는 비대면 가창 수업의 문제점들을 보완하고, 새로운 비접촉 가창 수업 방법에 관한 지속적인 연구와 시스템 구축이 더욱 마련되어야 한다.
해수면 온도는 기후와 바다의 생태계 그리고 인간의 활동에까지 중요한 영향을 미치는 해수의 특성 중 하나로 이를 예측하는 것은 항상 중요하게 다뤄지는 문제다. 최근 들어 과거의 패턴을 학습하여 예측값을 생성할 수 있는 딥러닝을 활용한 해수면 온도 예측이 복잡한 수치모델을 이용한 예측의 대안으로 주목받고 있다. 딥러닝은 입력 자료 간의 비선형적인 관계를 추정할 수 있는 것이 큰 장점이며, 최근 컴퓨터 그래픽카드의 발달로 많은 양의 데이터를 반복적이고 빠르게 계산할 수 있게 되었다. 본 연구에서는 기존의 딥러닝 모델의 단점들을 보완하면서 시공간 자료를 다룰 수 있는 합성곱 신경망(Convolutional Neural Network) 기반의 U-Net을 통해 단기 해수면 온도 예측을 수행하였다. 개발한 딥러닝 모델을 이용한 한국 남부 근해 해수면 온도의 단기 예측은 예측일의 해수면 온도의 중장기 변동성에 따라 달라지는 성능을 보였다. 해수면 온도 변동성의 증감은 계절적 변동 뿐 아니라 Pacific Decadal Oscillation (PDO) 지수의 변동과도 유의미한 상관관계를 보였는데, 이는 계절 변동 및 PDO에 따른 기후 변화에 기인한 수온 전선의 강도 변화가 해수면 온도의 시공간적 변동성에 영향을 줌으로써 발생했음을 확인하였다. 본 연구는 해수면 수온 자료가 가지고 있는 계절적 변동성과 경년 변동성이 딥러닝 모델의 해수면 단기 수온 예측 성능에 기여함을 밝힌 것에 그 의의가 있다.
연구목적: 본 연구는 화재발생 건축물 정보, 신고자 취득 정보 등 초기 정보를 활용하여 화재현장의 위험도를 예측하여, 재난 발생 초기에 효과적인 소방자원 동원 및 적절한 대응을 위한 피해최소화 전략 수립을 지원하는 위험도 예측 모델을 개발하고자 한다. 연구방법: 화재 통계 데이터 상에서 화재의 피해규모와 관련된 변수 규명을 위해 머신러닝 알고리즘을 이용한 변수간 상관성 분석을 실시하여 예측 가능성을 검토하고, 데이터 표준화 및 이산화 등의 전처리를 통해 학습 데이터 셋을 구축하였다. 이를 활용하여 예측 정확도가 높은 것으로 평가 받고 있는 복수의 머신러닝 알고리즘을 테스트하여 가장 정확도가 높은 알고리즘을 적용한 위험도 예측 모델을 개발하였다. 연구결과: 머신러닝 알고리즘 성능 테스트 결과 랜덤포레스트 알고리즘의 정확도가 가장 높게 나왔으며, 위험도 등급에 대해서는 중간치에 대한 정확성이 상대적으로 높은 것으로 확인되었다. 결론: 화재 통계 상 피해규모 데이터의 편향성에 의해 예측모델 정확도가 제한적으로 나타났으며, 예측 모델 성능 개선을 위해 데이터 정합성 및 결손치 보완 등을 통한 데이터 정제가 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.