Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.161-163
/
2022
본 논문에서는 패치매치 기법 및 분할 기법의 조밀 깊이지도들의 효율적인 결합을 통해 기존의 패치매치 기반의 방법들이 낮은 깊이값 추정 정확도를 보인 영역들인 텍스처가 부족한 영역과 기존의 분할 기반 방법들이 깊이값 추정에 한계를 보인 세밀한 영역에서의 깊이값 추정 정확도를 동시에 높이고 고품질의 조밀 깊이지도를 얻는 것을 목표로 한다. 이를 위해 제안한 방법에서는 신뢰지도를 바탕으로 패치매치 기법의 조밀 깊이지도, 조밀 노말지도와 분할 기법의 조밀 깊이지도, 조밀 노말지도의 초기 결합 깊이지도 및 초기 결합 노말지도를 생성한다. 이후 각 픽셀에서 원래 픽셀과 주변 픽셀에서의 깊이값, 노말값들로 업데이트를 위한 후보들을 만든다. 이후 각각의 후보들에 대해서 깊이값, 노말값, 컬러값들을 바탕으로 비용을 계산한다. 이후 가장 최적의 비용을 가지는 후보값으로 각 픽셀의 깊이값과 노말값을 업데이트한다. 이를 통해 패치매치 기법 및 분할 기법의 조밀 깊이지도들의 장점을 합친 결합 조밀 깊이지도를 생성한다.
일반적으로 스터럽이 없는 철근콘크리트 보의 전단강도는 콘크리트 압축강도, 주철근비, 전단스팬비 및 보 유효깊이에 좌우된다는 것이 많은 연구를 통하여 밝혀지고 있다. 따라서, 본 연구에서는 고강도 콘크리트를 사용한 철근콘크리트 보의 거동 및 전단강도 특성을 분석하기 위하여 주철근비, 전단스팬비 및 보 유효깊이를 변수로 두고 총 22개의 단철근 보 실험체를 제작하여 실험을 수행하였다. 실험결과는 ACI규준식, Zsutty식 및 Bazant & Kim식의 예측값들과 함께 비교, 분석되었는데, ACI 규준식은 주철근비 및 전단스팬비의 효과를 과소평가할 뿐만 아니라 유효깊이가 915mm인 큰 보의 경우 안전측이 아니어서 이에 대한 고려가 필요할 것으로 판단된다. Zsutty식은 주철근비의 효과를 적절하게 평가하는 것으로 나타났으며, Bazant & Kim 식은 유효깊이 증가에 따른 전단강도 감소 경향을 잘 예측하는 것으로 나타났다. 또한, 다른 연구자들의 실험치와 비교, 분석해본 결과 주철근비 및 전단스팬비의 효과는 콘크리트 압축강도 수준에 따라 큰 변화가 없는 것으로 판단된다.
Proceedings of the Korea Multimedia Society Conference
/
2012.05a
/
pp.426-427
/
2012
본 논문은 부호화된 저해상도의 깊이 영상과 고해상도의 색상 영상을 입력으로 고해상도의 깊이 영상을 생성하는 새로운 방법을 제안한다. 제안하는 방법은 결합 양측 필터를 이용하여 저해상도 깊이 영상의 경계 정보를 향상시킨다. 그런 다음, 깊이 영상 보간 단계에서 향상된 경계 정보를 참조하여 고품질 고해상도의 깊이 영상을 생성한다. 실험을 통한 깊이 영상과 합성영상의 화질 평가에서, 제안하는 방법이 기존의 3DV-ATM 깊이 영상 보간법보다 높은 성능을 보인다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.06a
/
pp.348-350
/
2013
본 논문에서는 깊이영상의 특징을 이용하여 깊이영상에 보다 적합한 움직임 예측방법에 대한 방식을 제안한다. 기존 컬러영상 기반으로 제안되었던 대부분의 움직임 예측 방법들이 깊이영상에 적용할 경우 local minimum 에 빠지게 되어 이에 따른 압축 성능 저하가 있음을 확인하였다. 본 논문에서는 이러한 문제점들이 깊이영상의 오브젝트 경계 영역에서 나타나게 됨을 분석하며, 이러한 문제점을 해결하기 위해 깊이영상의 경계 영역에 대해 feature matching 방식을 이용한 full search 방식을 제안한다. 실험적인 결과는 제안방식이 기존 full search 방식과 비교하여 성능은 비슷하게 유지한 채 복잡도를 크게 개선할 수 있음을 보여준다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.695-696
/
2020
CNN(CNN: Convolutional Neural Network)은 컴퓨터 비전의 많은 분야에서 뛰어난 성능을 보이고 있으며, 단일 영상으로부터 깊이(depth) 추정에서도 기존 기법보다 향상된 성능을 보이고 있다. 그러나, 단일 영상으로부터 신경망이 얻을 수 있는 정보는 제한적이기 때문에 스테레오 카메라로부터 얻은 좌/우 영상으로부터의 깊이 추정보다 성능 향상에 한계가 있다. 따라서 본 논문에서는 에지 맵(edge map)을 이용한 CNN 기반의 단일 영상에서의 깊이 추정의 개선 기법을 제안한다. 제안 방법은 먼저 단일 영상에 대한 전처리를 통해서 에지 맵과 양방향 필터링된(bilateral filtered) 영상을 생성하고, 이를 CNN 입력으로 하여 기존 단일 영상 깊이 추정 기법 대비 개선된 성능을 보임을 확인하였다.
Understanding the process of spatial perception plays a significant role in the design process as well as in the use of actual spaces. The perception of spatial depth can vary according to the space composition and design even there is no change in the actual size of the space. The properties of 3-dimensional space are its width, height, and depth; however, compared to the perception of spatial width and height, little research and theories exist on spatial depth perception. The reasons may be there less interest lies in the effect of spatial depth perception than that of spaciousness or height of space. This study is an investigation of the process of spatial depth perception using an eye-tracking device with stimuli developed through Computer Graphics. A total of 44 interior design major students participated in the eye tracking experiment; and they looked at three images comprised of an identical room with only changes in the rear wall condition. The results show that a significant difference in the fixation duration per stimulus exists. In addition, a significant difference exists on the fixation duration per stimulus according to the participants' answer of the deepest space. The result of this study can help identify factors for spatial depth perception, validate the assumption on it, and provide knowledge on how to acquire desirable spatial depth by utilizing the research result.
Journal of the Korea institute for structural maintenance and inspection
/
v.8
no.3
/
pp.149-158
/
2004
In this study, deep beam specimens are designed to have the effective shear span to depth ratio 1.0 and web opening within effective shear region. The purpose of this study is to investigate experimentally the shear strengthening effect between before failure and after failure upon using fiber sheets for RC deep beam with opening in web. The results can be summarized as follows; 1)When deep beams with web opening were failed in shear, their initial diagonal crack load and crack width were not influenced by their types of the arranged steel bars. 2)Deep beam with the horizontal reinforced bar was effective in the ultimate load of deep beam with web opening in shear failure 3)There were the approximate values between the experimental values and the analysis of finite element method. 4)The ultimate failure strengths of the repaired and strengthened specimens were increased about 34.4%~83.8% in comparison with specimens not to be strengthened.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.11a
/
pp.8-10
/
2011
3D 콘텐츠를 획득하는 여러 가지 방법 중 2D-plus-Depth 구조는 다시점 영상을 얻을 수 있는 장점 때문에 최근 이에 관한 연구가 활발히 진행되고 있다. 이 구조를 통해서 고품질의 3D영상을 얻기 위해서는 무엇보다 고품질의 깊이 영상을 구현하는 것이 중요하다. 깊이 영상을 얻기 위해서 Time-of-Flight(ToF)방식의 깊이 센서가 활용되고 있는데 이 깊이 센서는 실시간으로 깊이 정보를 획득할 수 있지만 낮은 해상도와 노이즈가 발생한다는 단점이 있다. 따라서 깊이 영상의 특성을 보존하는 상환 변환을 하여야지만 고품질의 3D 콘텐츠를 제작할 수 있다. 주로 깊이 영상의 해상도를 높이기 위해서 Joint Bilateral Upsampling(JBU) 방식이 사용되고 있다. 하지만 이 방식은 4배 이상의 고 해상도 깊이 영상을 획득하는 데에는 적합하지 않다. 따라서 고해상도의 깊이 영상을 얻기 위해서 보간법을 수행하여 가이드 영상을 만든 후 Bilateral Filtering(BF)을 처리함으로써 영상의 품질을 향상시킨다. 본 논문에서는 2D-plus-Depth 구조에서 얻은 컬러 영상과 깊이 영상을 결합한 보간법을 통해서 깊이 영상의 특성을 살린 가이드 영상을 구현하는 방법을 제안한다. 실험 결과는 제안 방법이 기존 보간법보다 경계 영역 및 평활한 영역에서 깊이 영상의 특성을 잘 보존하는 것을 보여준다.
본 연구는 무근 폴리에스터 폴리머 콘크리트보의 휨피로 거동을 구명키 위한 것으로서 초기균열깊이와 높이의 비 (a/h)를 0, 0.2, 0.4로 하고 응력수준을 45%, 55%, 65%로 하여 피로 시험을 실시한 것이다. 그 결과 초기균열깊이가 커질수록 피로수명이 짧아졌으며, 피로수명비에 따른 휨인장변형도는 균열깊이가 클수록 작아졌다. 또한 휨탄성계수는 피로수명비 0.2에서 0.6정도까지는 선형적인 변화를 보였으나, 초기와 말기에는 비선형적인 변화를 보여주었다. 그리고 응력수준과 균열깊이가 커질수록 취성적인 성질이 더 크게 나타남을 알 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.892-894
/
2005
본 논문에서는 스테레오 영상에서 깊이 정보를 추출하여 사람의 자세를 학습된 2차원 깊이 영상들의 선형 결함으로 표현하여 3차원 인체 모델을 재구성하는 방법을 제안한다. 한 장의 2차원 깊이 영상으로 최소 제곱법을 이용하여 프로토타입 깊이 영상의 선형 결합으로 표현되는 최적의 계수를 찾을 수 있다. 입력된 깊이 영상의 3차원 인체 모델은 프로토타입 깊이 영상에서 예측된 계수를 적용하여 생성한다. 학습 단계에서는 데이터를 계층적으로 나누어 모델을 생성한다. 또한, 재구성 단계에서는 실루엣 영상과 깊이 영상으로부터 계층적으로 나누어진 학습 데이터를 이용하여 3차원 인체 자세를 재구성한다. 학습 및 재구성의 마지막 단계에서는 실루엣 영상 대신 깊이 영상을 이용하여 3차원 인체 모델을 재구성한다. 한 장의 실루엣 영상을 이용하면 영상의 노이즈에 민감하기 때문에 재구성 단계의 상위 레벨에서는 실루엣 영상의 누적 영상을 이용한다. 실험 결과는 제안된 방법이 효율적으로 3차원 인체 자세를 재구성함을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.