• Title/Summary/Keyword: 보광재배

Search Result 35, Processing Time 0.019 seconds

Effect of Stem Number on Growth, Fruit Quality, and Yield of Sweet Peppers Grown in Greenhouses under Supplemental Lighting with High Pressure Sodium Lamps in Winter (겨울철 고압나트륨등 보광 하에서 온실재배 파프리카의 줄기 유인 수가 생육, 과실 품질 및 생산량에 미치는 영향)

  • Yoon, Seungri;Kim, Jin Hyun;Hwang, Inha;Kim, Dongpil;Shin, Jiyong;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.237-243
    • /
    • 2021
  • The objective of this study was to evaluate the effect of stem number on plant growth, fruit quality, and yield of sweet peppers grown in greenhouses under supplemental lighting in winter. The seedlings were transplanted at 3.2 plants·m-2 on October 26, 2020, and started supplemental lighting with 32 high pressure sodium lamps for 16-hour photoperiod from December 1, 2020 to May 25, 2021. Stems were differently trained with 2 and 3 numbers after branching nodes were developed. In the final harvest, the plant height was significantly shorter in the 3 stem-plants than in the 2 stem-plants. The number of nodes per stem and the leaves per plant were increased in the 3 stem-plants than in the 2 stem-plants, while the leaf area was less affected. There were no significant differences in the dry mass of leaves, stems, and immature fruits between the 2 and 3 stem-plants. The fruit fresh weight and fruit dry weight in the 3 stem-plants were decreased by 17% and 12% at 156 days after transplanting (DAT), and by 17% and 15% at 198 DAT compared to those in the 2 stem-plants, respectively. The marketable fruit rates were 93.6% and 95.4% in the 2 and 3 stem-plants, respectively. The total fruit yield in the 3 stem-plants was increased by 30.2% as compared to that in the 2 stem-plants. We concluded that the 3-stem-training cultivation positively affected the total fruit yield by sustaining adaptive vegetative growth of the plants. This result will help producers make useful decisions for increasing productivity of sweet peppers in greenhouses.

Improvement of Canopy Light Distribution, Photosynthesis, and Growth of Lettuce (Lactuca Sativa L.) in Plant Factory Conditions by Using Filters to Diffuse Light from LEDs (LED 식물공장에서 산란 유리 이용에 의한 상추(Lactuca Sativa L.)의 군락 광분포, 광합성 및 생장 향상)

  • Kang, Woo Hyun;Zhang, Fan;Lee, June Woo;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.84-93
    • /
    • 2016
  • Plant factories with artificial lights require a large amount of electrical energy for lighting; therefore, enhancement of light use efficiency will decrease the cost of plant production. The objective of this study was to enhance the light use efficiency by using filters to diffuse the light from LED sources in plant factory conditions. The two treatments used diffuse glasses with haze factors of 40% and 80%, and a control without the filter. For each treatment, canopy light distribution was evaluated by a 3-D ray tracing method and canopy photosynthesis was measured with a sealed acrylic chamber. Sixteen lettuces for each treatment were cultivated hydroponically in a plant factory for 28 days after transplanting and their growth was compared. Simulation results showed that the light absorption was concentrated on the upper part of the lettuce canopy in treatments and control. The control showed particularly poor canopy light distribution with hotspots of light intensity; thus the light use efficiency decreased compared to the treatments. Total light absorption was the highest in the control; however, the amount of effective light absorption was higher in treatments than the control, and was highest in treatment using filters with a haze factor of 80%. Canopy photosynthesis and plant growth were significantly higher in all the treatments. In conclusion, application of the diffuse glass filters enhanced the canopy light distribution, photosynthesis, and growth of the plants under LED lighting, resulting in enhanced the light use efficiency in plant factory conditions.

Influence of Shading and Irrigation on the Growth and Development of Leaves Tissue in Hot Pepper (고추 고온기 재배 시 차광과 관수가 생육 및 엽육조직 발달에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Jun Gu;Jang, Yoon Ah;Lee, Hee Ju;Chae, Won Byoung;Do, Kyung Ran
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.448-453
    • /
    • 2014
  • Influences of shading and irrigation in summer hot pepper cultivation on the plant growth and mesophyll tissue were investigated. Hot pepper plants were exposed to three shade levels (0, $30{\pm}5$ and $80{\pm}5%$) and irrigated or non-irrigated in greenhouse condition. Plant height and leaf area were highest in 30% shading and stem diameter and fresh and dry weights were highest in no shading. Plant growth was better in rain shelters with irrigation than in those without irrigation. The numbers of hot pepper fruits in the beginning of harvest were 49 in rain shelters without irrigation and shading, 22 in those with irrigation and without shading, 5 in those without irrigation with 30% shading, and 1 in those with irrigation and 30% shading. However, 80% shading showed lowest flower number and flower abscission, resulting in no fruit set, regardless of irritation. This is because carbohydrate translocation from leaves to reproductive organs may be not enough for developing fruits due to the lack of sunlight. The yield of hot pepper tended to be higher in rain shelter with irrigation than in those without irrigation. In optical microscopy observation, the thickness and development of mesophyll tissues decreased as increasing the degree of shading but no effect of irrigation on mesophyll tissues was observed. When stomata were observed with scanning electron microscope (SEM), the shape of stomata was normal but tissues surrounding stomata were slightly wrinkled in plants grown under 30% shading. The large number of abnormal stomata and wrinkled leaves was observed among plants grown in rain shelters with 80% shading. In plants grown in rain shelters without irrigation, tissues surrounding stomata were wrinkled and 10-20% decrease in the number of stomata was observed. Therefore, in hot pepper cultivation in summer with high temperature, shading was not effective for fruit yield and mesophyll tissue development; if shading is unavoidable, high degree of shading is not advisable. Further studies are needed for appropriate cultivar selection and environment-control techniques in hot pepper cultivation in summer with high temperature.

Effects of Seed Size, Temperature and GA Treatment on Hypocotyl Elongation in Soybean (콩의 종자크기, 온도 및 GA처리가 하배축신장에 미치는 영향)

  • 이성춘;서홍일;김진호;최경구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.1
    • /
    • pp.68-77
    • /
    • 1992
  • The present experiments were conducted to investigate the variability of hypocotyl elongation among the major soybean varieties by checking several conditions. The results obtained are summarized as follows. The rate of hypocotyl elongation is the highest during the day from 3.0 to 3.5 after seeding. It follows that it may be reasonable to evaluate the hypocotyl elongation of soybean seeds by comparison of hypocotyl length. And the tested 15 major cultivars could be classified as follow ; long ; Eunhakong, Janggyungkong and Bokwangkong, medium ; Namhekong, Dangyung-kong, Danyubkong, Milyangkong, Dugyukong, Paldalkong, Mangunjoseng, Namchunkong and Seal kong, short ; Gwanggyo, Begunkong and Jangbegkong. The hypocotyl elongation in small seed is longer than large seed. Correlation coefficients(r) for the relationships between 100 seed weight and hypocotyl elongation is -0.2506$^{**}$. As the rising temperature, the hypocotyl length is elongated, and longest at the range of 30 to 35$^{\circ}C$. The effects G $A_3$ hastened the hypocotyl elongation of soybean seed, and ABA, Kinetin and BA inhibit it, and that of those in short hypocotyl cultivars are higher than long hypocotyl cultivars. Hypocotyl length of long hypocotyl cultivars are longer than that of short hypocotyl cultivars under high temperature pre -treatment.

  • PDF

Effects of Supplemental Green LEDs to Red and Blue Light on the Growth, Yield and Quality of Hydroponic Cultivated Spinach (Spinacia oleracea L.) in Plant Factory (수경재배 식물공장에서 다양한 보광 LED가 시금치의 생육과 수량에 미치는 영향)

  • Dung, Nguyen Thi Phuong;Huyen, Tran Thi Thanh;Jang, Dong Cheol;Kim, Il Seop;Thach, Nguyen Quang
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.171-180
    • /
    • 2020
  • The effect of three different light qualities on growth, photosynthesis, quality and safe parameters of hydroponic cultivated spinach (Spinacia oleracea L.) were investigated indoor. Three different light qualities were created of red (660 nm), blue (450 nm) and green (550 nm) LEDs corresponding at ratio R660/B450 = 4/1 (RBL); R660/B450/G550= 5/2/3 (WWL); R660/B450/G550 = 1/1/1 (WL), which were tested at the same intensity (PPFD =190 μmol m-2 s-1). The results showed that the plant height and leaf number were the lowest in WL treatment. The SPAD, Net photosynthesis rate Pn, Fv/Fm, Leaf area index LAI values and all parameters of root characteristics were the highest in RBL treatment and were significantly different from two others. Fresh weight of stem, leaf and root, dry weight of root in the three light qualities were significantly different. In contrast, the highest K+ content in WL was different from WWL and RBL treatments, while Ca2+ and Fe2+ content were the highest in the RBL treatment. Vitamin C content was significantly different between the three treatments. nitrate and oxalic acid contents were the highest in WL treatment, whereas soluble-solids contents and vitamin C contents were the highest in RBL treatment. Oxalic acid, nitrate contents were observed tending reduced under WWL although oxalic acid content in RBL treatment was not different from WL and WWL treatments. In all three different light treatments were not detected Salmonella, E.coli. Our results suggest that RBL may be appropriate light for growth of spinach, but supplementary green light to a combination of red and blue LEDs at the reasonable rate can change the quality of spinach in a positive direction. Hydroponic cultivated spinach was safe for users.