• 제목/요약/키워드: 보강 섬유

검색결과 1,623건 처리시간 0.028초

고로슬래그 골재를 사용한 다공성 콘크리트의 물리·역학적 특성에 미치는 고로슬래그 미분말, 황토 및 보강섬유의 효과 (Effect of Blast Furnace Slag, Hwang-toh and Reinforcing Fibers on The Physical and Mechanical Properties of Porous Concrete Using Blast Furnace Slag Coarse Aggregate)

  • 이진형;박찬기
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.53-60
    • /
    • 2010
  • The effects of blast furnace slag, hwang-toh, and reinforcing fiber on the physical and mechanical properties of porous concrete using blast furnace slag coarse aggregates have been evaluated in this study. The effect of the depending on replacement ratio of blast furnace slag to cement was investigated such that the replacement ratio was varied to 0 %, 25 % and 50 %. Also, the replacement ratios of hwang-toh were 0, 20 and 30 %. The polyvinyl alcohol fiber was used for the reinforcing fiber. A series of pH, unit mass, and void ratio tests have been performed to study the physical properties of the porous concrete using blast furnace slag coarse aggregates with the polyvinyl alcohol fiber and the replacement ratios of blast furnace slag, hwang-toh, while a series of compressive tests have been performed to evaluate the strength property depending on polyvinyl alcohol fiber and the replacement ratios of blast furnace slag, hwang-toh. The test results indicated that the physical and mechanical properties of porous concrete using blast furnace slag coarse aggregates is affected by the replacement ratio of blast furnace slag, and the fiber contents. According to the tests with polyvinyl alcohol fiber contents, the void ratio was decreased and the compressive strength was upgraded.

폴리프로필렌 섬유 보강 CSG 재료의 다짐 및 압축강도 특성 (The Compaction and Compressive Strength Properties of CSG Material Reinforced Polypropylene Fiber)

  • 김영익;연규석;김용성
    • 한국농공학회논문집
    • /
    • 제52권4호
    • /
    • pp.73-81
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the compaction and compressive strength properties of stress-strain, elastic modulus and fracture mode CSG materials reinforced polypropylene fiber. Polypropylene fiber widely used for concrete reinforcement is randomly distributed into cemented sand. The two types of polypropylene fiber (monofillament and fibrillated fiber) were used and fiber fraction ratio was 0, 0.2 %, 0.4 %, 0.6 % and 0.8 % by the weight of total dry soil. The effect of fiber fraction ratio and fiber shape on compaction and compressive strength were investigated. The optimum moisture contents (OMC) of CSG material increased as fiber fraction increased and the dry density of CSG material decreased as fiber fraction. Also, the maximum increase in compressive strength was obtained at 0.4 % content of monofillament and fibrillated fiber. CSG material behaviour was controlled not only by fiber fraction but also fiber distribution, fiber shape and fiber type.

섬유 보강 혼합토의 워커빌리티 특성 (Workability Characteristics of Fiber Mixed Soil)

  • 송규복;이상호
    • 한국농공학회논문집
    • /
    • 제58권1호
    • /
    • pp.53-59
    • /
    • 2016
  • This study was conducted by the slump test and the consistency test of the fiber mixed soil which is soil reinforced with fiber as a reinforced material to investigate and estimate the difficulty degree of work and the proper water content. So I would like to present the fundamental data that establishes the work standard of the fiber mixed soil. In conclusion, in this study the slump value of the fiber mixed soil increases over-all according to the increase of the water content although it has a little difference of the increase range and it is smaller than one of the soil. It is estimated that the aggregating and throwing work of the fiber mixed soil would be fine when it has the about 25 % water content and the wall and floor plastering work is the about 30 % ~ 35 % and the flowing and pouring work is the about 40 % water content as well as the mold compacting work is the about 20 %. There is no decreasing of the workability when the soil is reinforced by the fiber because the workability characteristics of the fiber mixed soil is similar to the one of the soil. Therefore, It is estimated that using the fiber as a reinforced material of soil would be appropriate for the construction.

섬유보강 포러스 콘크리트의 공극률과 투수계수 특성에 관한 연구 (A Study on the Void Ratio and Permeability Coefficient Properties of fiber Reinforced Porous Concrete)

  • 김정환;조광연;이준;박승범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.677-682
    • /
    • 2000
  • Porous concrete is defined as d type of concrete for which the fine aggregate component the matrix is entirely omitted. Although it had been used as a building material in Europe for over 60 years, low strength and high void ratio limited its application in the past. In recent years, however high void ratio of concrete has been recognized again and can be used as an environmental conscious material, for example, parking lots, draining light-traffic-volume pavements and as sea water purifying material. The result of an experiment on the void ratio of fiber reinforced porous concrete and its influence on the compressive strength and permeability relationship of concrete are reported in this paper. One-sized coarse aggregate of 5-10mm, and three absolute content of fiber(steel fiber, polyprophylen fiber) were used. The result of measured void ratio, permeability coefficient and compressive strength show a small variation. Void ratio, permeability coefficient and compressive strength of fiber reinforced porous concrete depend on contents of fiber and absolute volume ratios of paste to aggregate.

  • PDF

초고강도 섬유보강 시멘트 복합체 I형 프리스트레스트 보의 거동 해석 (Analysis of the UHP-SFRCC(Ultra High Performance Steel Fiber Reinforced Cementitious Composites) I section Prestressed beam.)

  • 한상묵;김성욱;강수태;강준형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.57-60
    • /
    • 2005
  • The objective of this paper is to investigate and analyze the behaviour of prestressed I section structural members constructed with ultra high perfomance steel fiber reinforced cementitious concrete (SFR-UHPC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The parameters of test specimens were span to depth ratio, prestressing force, prestressing wire placement and web width. Most influential parameter to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone should be redefined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

초고강도 강섬유 보강 콘크리트의 성능에 미치는 믹서의 영향 (Effect of Mixer on the Performance of Ultra-High Strength Steel Reinforced Concrete)

  • 박정준;고경택;류금성;강수태;김성욱;한상묵
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.549-552
    • /
    • 2006
  • Generally the ultra-high strength steel reinforced concrete has rich mix composition composed of high-strength type mineral admixtures and as a result of very low water-binder ratio(about under w/b=25%), it reveals ultra-high compressive strength(about over 100Mpa). Also, in order to obtain sufficient toughness after construction, we usually mix a large quantity steel fiber with ultra-high strength steel reinforced concrete therefore we must use proper mixer for workability. When we make the ultra-high strength steel reinforced concrete we need more long mixing time or much super-plasticizer than when we manufacture normal concrete. These bring about economical problems and performance deterioration. Therefore, in this study, in order to manufacture easily ultra-high strength steel reinforced concrete we develope a dedicated mixer for ultra-high strength steel reinforced concrete with high speed type. It carried out the examination for comparison between the dedicated and general type mixer, the analysis and counterplan of the point at issue when we manufacture ultra-high strength steel reinforced concrete by the dedicated mixer.

  • PDF

초고성능 콘크리트의 인장거동 설계기준 정립에 관한 연구 (The Design Guidelines for the Tensile Behavior of Ultra-High Performance Concrete)

  • 강수태;조창빈;박종섭;박정준;류금성;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.361-364
    • /
    • 2008
  • UHPC를 이용한 구조물 설계가 이루어지기 위해서는 우선적으로 재료의 역학적 거동 특성을 명확히 규명하여야 하며, 일반 콘크리트와 비교할 때 가장 큰 특징은 구조적으로 유효한 인장강도 및 인장거동이다. 따라서 UHPC를 활용한 적절한 설계가 되기 위해서는 특히 UHPC의 인장거동의 특성을 나타내는 구성모델의 확립이 무엇보다 중요하다고 말할 수 있다. 본 연구에서는 UHPC의 인장거동을 실험 및 해석을 통해 규명하고자 하였다. 프랑스 SETRA/AFGC에서 제시한 설계기준(안)과 일본 JSCE에서 제시한 초고강도 섬유보강 콘크리트의 설계 s시공지침(안)과의 비교를 통해 UHPC의 인장 연화거동과 인장응력-변형률 관계에 대해 합리적인 거동모델을 제시하였다.

  • PDF

섬유보강 혼합경량토의 역학적 특성 비교 (Comparison of Mechanical Characteristics of Fiber-Reinforced Lightweight Soils)

  • 김윤태;한우종
    • 한국해양공학회지
    • /
    • 제22권4호
    • /
    • pp.51-58
    • /
    • 2008
  • The objective of this study was to investigate the mechanical characteristics of fiber-reinforced lightweight soil using waste fishing net or monofilament for recycling both dredged soils and bottom ash. Reinforced lightweight soil consists of dredged soil, cement, air foam, and bottom ash. Waste fishing net or monoiament was added the mixture in order to increase the shear strength of the lightweight soil. Test specimens were fabricated with various mixing conditions, including waste fishing net content and monofilament content. Several series of unconfined compression tests and direct shear tests were carried out. From the experimental results, it was found that the unconfined compressive strength, as well as the stress-strain behavior of reinforced lightweight soil was strongly influenced by mixing conditions. In this study, the maximum increase in shear strength was obtained with either a 0.5% content of monofilament or 0.25% waste fishing net. The unconfined compressive strength of reinforced lightweight soil with monofilament was greater than that of reinforced lightweight soil with waste fishing net.

토목섬유로 보강된 연약지반의 정.동적 모형실험 (Static and Repeat Loads Model Test on Soft Clay Layer due to the Geotextile Reinforcement)

  • 김영수;권성목;김연욱;김형준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.232-239
    • /
    • 2005
  • Recently geosynthetics that can be constructed on soft ground have been used for reinforcement and separation in various ways. Through laboratory model tests and numerical analysis, in this study, estimated the suitability of cable elements and appropriate input factors considering loading effect in modeling of geosynthetics. First, in laboratory model tests, geosynthetics were constructed on the clay, and covered with the thickness, 7.5cm of sand mat. And then static and dynamic model tests were performed measuring loading, settlement, ground lateral displacement, and displacements of geosynthetics, but, for cyclic loading, bearing capacity increased linearly with stiff slop because cyclic loading with constant cyclic pressure compacted the ground. Numerical analysis were performed with FLAC 4.0 2D using Mohr-Coulomb and Modified Cam-Clay models, and they compared with the results of model tests. Cable elements of FLAC in modeling geosynthetics couldn't consider the characteristics of geosynthetics that increase shear strength between geosynthetics and clay according to the loading increase. Therefore, in this study, appropriate equation that can consider loading effects in Cable elements was proposed by Case Study.

  • PDF

변형률 적합성을 고려한 토목섬유 보강재의 장기허용강도 결정 모델 (Model to Determine Long-term Allowable Strength of Geosynthetics Reinforcements Considering Strain Compatibility)

  • 전한용;유증조;목문성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1580-1587
    • /
    • 2005
  • To calculate the long-term allowable strength of geosynthetic reinforcement, replacement method was recommended. The isochronous creep curve by S. Turner was used to define the relation between creep strain and allowable strength. In isochronous curve at given time, one can read the allowable strength at allowable creep strain. The allowable strain gets from specification by directors or manufacturers according to the allowable displacement of reinforced structures. The allowable strength can be determined in relation to the allowable horizontal displacement each structures case by case. The effect of install damage on isochronous behaviors of geosynthetic reinforcement was little. In previous study, install damage increase the creep strain slightly. And the degradation was not identified. But it is supposed that degradation increase the creep strain. In conclusion, The recommended model to determine long-term allowable strength of geosynthetic reinforcements considering tensile deformation of reinforcement and soil is fit for proper, correct and economic design for reinforced earth walls.

  • PDF